Skip Nav Destination
Close Modal
Search Results for
molten sulfate
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 217 Search Results for
molten sulfate
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003609
EISBN: 978-1-62708-182-5
... oxidation metal-fused salt system molten fluoride chloride salt molten nitrate molten sulfate hydroxide melts carbonate melts molten salt corrosion THE CORROSION of metal containers by molten, or fused, salts has been observed for an extended period of time, but over the last several decades...
Abstract
This article discusses two general mechanisms of corrosion in molten salts. One is the metal dissolution caused by the solubility of the metal in the melt. The second and most common mechanism is the oxidation of the metal to ions. Specific examples of the types of corrosion expected for the different metal-fused salt systems are also provided. The metal-fused salt systems include molten fluorides, chloride salts, molten nitrates, molten sulfates, hydroxide melts, and carbonate melts. The article concludes with information on prevention of molten salt corrosion.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0004050
EISBN: 978-1-62708-183-2
..., such as vanadium, form highly corrosive molten sulfate-vanadate deposits; the lowest-melting eutectic in the Na 2 SO 4 -V 2 O 5 system is at approximately 500 °C (930 °F). Alkali metal chlorides, such as NaCl and KCl, present in coal and biomass as well as other low-melting metal chlorides, such as ZnCl 2...
Abstract
This article describes the specific features and mechanisms of oxidation in thermal spray coatings. It discusses the two forms of hot corrosion in sulfur-containing combustion, namely high-temperature hot corrosion and low-temperature hot corrosion. The article reviews the behavior of corrosion-resistant coatings in boilers. The effects of high-temperature corrosion in waste incinerators are detailed. The article also examines the effects of erosion-corrosion in fluidized bed combustion boilers.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004124
EISBN: 978-1-62708-184-9
... (1000 °F). Oil ash corrosion is believed to be a catalytic oxidation of the material by reaction with V 2 O 5 . Sodium oxide also reacts with sodium trioxide to form sodium sulfate, which together with V 2 O 5 also forms a range of low-melting-point liquids with a minimum temperature around 540 °C...
Abstract
High-temperature exposure of materials occurs in many applications such as power plants (coal, oil, natural gas, and nuclear), land-based gas turbine and diesel engines, gas turbine engines for aircraft, marine gas turbine engines for shipboard use, waste incineration, high-temperature fuel cells, and missile components. This article discusses high-temperature corrosion in boilers, diesel engines, gas turbines, and waste incinerators. Boilers are affected by stress rupture failures, waterside corrosion failures, fireside corrosion failures, and environmental cracking failures. Contamination of combustion fuel in diesel engines can cause high-temperature corrosion. Gas turbine engines are affected by hot corrosion. Refractory-lined incinerators and alloy-lined incinerators are discussed. The article provides case studies for each component failure.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004158
EISBN: 978-1-62708-184-9
... and 1700 °F). High-temperature hot corrosion is caused by the formation of alkali metal salts, such as sodium sulfate (Na 2 SO 4 ) and potassium sulfate (K 2 SO 4 ), which melt and form a liquid on the surface. This molten salt attacks the oxide scale, destroying the protection normally afforded...
Abstract
The corrosion issues in the compressor, combustor and turbine sections of industrial gas turbines used in steam production generally depend on the quality of the fuel, air, and water used in the engine than on the specific industrial application. This article focuses on the forms of corrosion and their preventive measures in the compressor, combustor and turbine sections of a steam turbine. The compressor section mainly suffers from aqueous corrosion; while in case of the combustor and turbine sections, which are made of nickel-base superalloys, high-temperature environmental attack in the form of high-temperature oxidation and hot corrosion are predominant. The effect of high-temperature oxidation and hot corrosion on the mechanical properties of superalloys is also discussed.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003671
EISBN: 978-1-62708-182-5
..., in the Ni-O-S system, ΔG o values of nickel monoxide (NiO[s]), nickel monosulfide (NiS[l]), nickel sulfate (NiSO 4 [s]), sulfur dioxide (SO 2 [g]), sulfur trioxide (SO 3 [g]), and sulfur (S[l]) are needed. In Fig. 2 , the boundary between the Ni(s) and the NiO(s) regions represents the reaction Ni(s...
Abstract
This article provides information on the thermodynamics and kinetics of high-temperature corrosion. The thermodynamics of high-temperature corrosion reactions reveals what reactions are possible under certain conditions and kinetics explains how fast these possible reactions will proceed. The article describes the diffusion process that plays a key role in oxidation and other gaseous reactions with metals. It discusses the development of stress in oxide layers. The article presents the sample preparation methods for high-temperature testing, and expounds the measurement methods of high-temperature degradation. It reviews a number of potential processes, which are responsible for high-temperature corrosion. The article details a wide range of coatings and coating processes for protecting components in a variety of operating conditions. It also discusses the testing methods used for materials at high temperatures, including furnace tests, burner rig testing, and thermogravimetric analysis, and the test methods conducted at high temperature and high pressure.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006787
EISBN: 978-1-62708-295-2
... . Although heavy ash deposits could be present along the tube crown, the composition of the deposit determines whether or not fireside corrosion occurs. In the presence of molten ash products, the oxide, even in oxidizing environments, becomes unstable and dissolves. Alkali sulfates deposited on the fireside...
Abstract
High-temperature corrosion can occur in numerous environments and is affected by various parameters such as temperature, alloy and protective coating compositions, stress, time, and gas composition. This article discusses the primary mechanisms of high-temperature corrosion, namely oxidation, carburization, metal dusting, nitridation, carbonitridation, sulfidation, and chloridation. Several other potential degradation processes, namely hot corrosion, hydrogen interactions, molten salts, aging, molten sand, erosion-corrosion, and environmental cracking, are discussed under boiler tube failures, molten salts for energy storage, and degradation and failures in gas turbines. The article describes the effects of environment on aero gas turbine engines and provides an overview of aging, diffusion, and interdiffusion phenomena. It also discusses the processes involved in high-temperature coatings that improve performance of superalloy.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003555
EISBN: 978-1-62708-180-1
... 28 ). These contaminants combine in the gas phase to form alkali metal sulfates; if the temperature of the alloy is below the dewpoint of the alkali sulfate vapors and above the sulfate melting points, molten sulfate deposits are formed ( Ref 28 ). Molten sodium sulfate is the principal agent...
Abstract
High temperature corrosion may occur in numerous environments and is affected by factors such as temperature, alloy or protective coating composition, time, and gas composition. This article explains a number of potential degradation processes, namely, oxidation, carburization and metal dusting, sulfidation, hot corrosion, chloridation, hydrogen interactions, molten metals, molten salts, and aging reactions including sensitization, stress-corrosion cracking, and corrosion fatigue. It concludes with a discussion on various protective coatings, such as aluminide coatings, overlay coatings, thermal barrier coatings, and ceramic coatings.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003593
EISBN: 978-1-62708-182-5
... to study fused-salt corrosion. fused salt fused salt corrosion hot corrosion molten salt corrosion sodium sulfate system THE OPERATION of high-temperature engineering systems, despite their associated materials problems, is inherent to advanced technologies that strive to gain an advantage...
Abstract
Metals and ceramics exposed to high-temperature salt solutions are susceptible to a form of corrosion caused by fused salts accumulating on unprotected surfaces. This article examines the electrochemistry of such hot corrosion processes, focusing on sodium sulfate systems generated by the combustion of fossil fuels. It explains how salt chemistry, including acid/base and oxidizing properties, affects corrosion rates and mechanisms. The article also provides information on electrochemical testing and explains how Pourbaix methods, normally associated with aqueous corrosion, can be used to study fused-salt corrosion.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003587
EISBN: 978-1-62708-182-5
... extensively studied but are not widely used include carbonates, sulfates, hydroxides, and oxides. Test Methods A number of kinetic and thermodynamic studies of corrosion by molten salts have been carried out in capsule-type containers. These studies can determine the nature of the corroding species...
Abstract
Molten salts, or fused salts, can cause corrosion by the solution of constituents of the container material, selective attack, pitting, electrochemical reactions, mass transport due to thermal gradients, and reaction of constituents and impurities of the molten salt with the container material. This article describes a test method performed using thermal convection loop for corrosion studies of molten salts. It discusses the purification of salts that are used in the Oak Ridge molten salt reactor experiment. The article also reviews the corrosion characteristics of nitrates/nitrites and fluoride salts with the aid of illustrations and equations.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004156
EISBN: 978-1-62708-184-9
... the formation of a molten phase, variation of the Na-to-K ratio in the coal inevitably affects the corrosivity of the ash. The melting point can be further reduced when additional compounds dissolve in the trisulfate formed in the ash. The complex sulfate has been shown to exhibit an acid-base behavior that can...
Abstract
The presence of certain impurities in coal and oil is responsible for the majority of fireside corrosion experienced in utility boilers. In coal, the primary impurities are sulfur, alkali metals, and chlorine. The most detrimental impurities in fuel oil are vanadium, sodium, sulfur, and chlorine. This article describes the two categories of fireside corrosion based on location in the furnace: waterwall corrosion in the lower furnace and fuel ash corrosion of superheaters and reheaters in the upper furnace. It discusses prevention methods, including changes to operating parameters and application of protective cladding or coatings.
Book Chapter
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003825
EISBN: 978-1-62708-183-2
... pyrosulfate … Molten NR Potassium sulfate 1–5 Room to hot E 10 Room E Potassium sulfide … … E Potassium thiosulfate 1 Room E Silver bromide … … E Silver chloride … … E Silver cyanide … … E Silver nitrate 50 Room E Sodium acetate (moist) 5 Room E...
Abstract
Tantalum is one of the most versatile corrosion-resistant metals known. The outstanding corrosion resistance and inertness of tantalum are attributed to a very thin, impervious, protective oxide film that forms on exposure of the metal to slightly anodic or oxidizing conditions. This article provides a discussion on the mechanism of corrosion resistance and on the behavior of tantalum in different corrosive environments, namely, acids; salts; organic compounds; reagents, foods, and pharmaceuticals; body fluids and tissues; and gases. It contains several tables that summarize the effects of acids, salts, and miscellaneous corrosive reagents on tantalum and applications for tantalum equipment in chemical, pharmaceutical, and other industries. Finally, the article presents a discussion on hydrogen embrittlement, the galvanic effects, and cathodic protection of tantalum and describes the corrosion resistance of different types of tantalum-base alloys.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003829
EISBN: 978-1-62708-183-2
..., sulfate, carbonate, nitrate-bisulfate, and halide salt solutions but is attacked by others ( Table 4 ). Corrosion of silver in halogens Table 3 Corrosion of silver in halogens Halogen Temperature Corrosion rate °C °F mm/yr mils/yr Chlorine, dry (a) 100 212 Slight >0.05 2...
Abstract
This article characterizes the corrosion resistance of precious metals, namely, ruthenium, rhodium, palladium, silver, osmium, iridium, platinum, and gold. It provides a discussion on the general fabricability; atomic, structural, physical, and mechanical properties; oxidation and corrosion resistance; and corrosion applications of these precious metals. The article also tabulates the corrosion rates of these precious metals in corrosive environment, namely, acids, salts, and halogens.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001778
EISBN: 978-1-62708-178-8
... that it will cause corrosion in adjacent electrical components. The presence of sulfate is cause for more concern because the balloons are formed by blowing sulfur dioxide gas through the molten glass, and the gas may become entrained inside them and escape by diffusion or when the thin cell walls are broken...
Abstract
Ion chromatography (IC) is an analytical technique that uses columns packed with ion exchange resins to separate ions in aqueous solutions and dynamically elute them to a detector. This article provides information on the different modes of detection, namely, eluent-suppressed conductivity detection, single-column ion chromatography with conductivity detection, ion chromatography with spectrophotometric detection, and amperometric electrochemical detection. It describes the modes of separation techniques in IC and reversed-phase IC. The article discusses the detection capabilities of IC, the procedures for preparing solid and liquid samples, as well as the applications of IC.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005300
EISBN: 978-1-62708-187-0
... 3 ), potassium carbonate (K 2 CO 3 ), and sodium carbonate (Na 2 CO 3 ) Sulfates such as potassium sulfate (K 2 SO 4 ) and sodium sulfate (Na 2 SO 4 ) The melting point of the nitrates ranges from 307 to 339 °C (585 to 642°F); the melting point of the carbonates ranges from 851 to 1339 °C...
Abstract
Aluminum fluxing is a step in obtaining clean molten metal by preventing excessive oxide formation, removing nonmetallic inclusions from the melt, and preventing and/or removing oxide buildup on furnace walls. This article discusses the solid fluxes and gas fluxes used in foundries. It reviews the classification of solid fluxes depending on their use and function at the foundry operation. These include cover fluxes, drossing fluxes, cleaning fluxes, and furnace wall cleaner fluxes. The article also examines the operational practices and applications of the flux injection in the foundries. It describes the applications of the aluminum fluxing such as crucible furnaces, transfer ladles, reverberatory furnaces, and holding/casting furnaces.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001254
EISBN: 978-1-62708-170-2
... in sealed atmospheres. All ruthenium plating electrolytes are based on solutions of simple ruthenium salts or ruthenium nitrosyl derivatives. Typical examples are ruthenium sulfate, ruthenium phosphate, ruthenium sulfamate, or ruthenium chloride ( Ref 4 ). These electrolytes are all essentially based...
Abstract
The electroplating of platinum-group metals (PGMs) from aqueous electrolytes for engineering applications is limited principally to palladium and, to a lesser extent, to platinum, rhodium, and thin layers of ruthenium. This article provides a discussion on the plating operations of these PGMs along with the types of anodes used in the process.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006102
EISBN: 978-1-62708-175-7
... and morphology between (a) H-reduced and (b) CO-reduced iron powders. Top row: SEM images; bottom row: cross section optical microscope images The electrolytic iron powder is produced by electrolytic deposition from soluble anodes in a chloride or sulfate electrolyte bath. This type of iron powder has...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003169
EISBN: 978-1-62708-199-3
..., such as an oxide, sulfide, carbonate, sulfate, chloride, or nitrate. This natural state is called an ore or a mineral. The process of dissociating these compounds and converting them into a metal (and a nonmetal) is known as extraction. The dissociation of the compound into metals and nonmetals is called reduction...
Abstract
Ores, which consist of the primary valuable mineral, predominant gangue content, valuable by-products, and detrimental impurities, are extracted and directed to mineral processing. This article describes the mineral processing facilities, such as crushers, grinders, concentrators, separators, and flotation devices that are used for particle size reduction, separation of particles according to their settling rates in fluids and dewatering of concentrate particles. It explains the basic principles, flow diagrams, ore concentrate preparation methods, and equipment of major types of metallurgical processes, including pyrometallurgical, hydrometallurgical, and electrometallurgical processes.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001259
EISBN: 978-1-62708-170-2
... application exists for the latter. Chromium-iron alloys have been deposited from sulfate solutions. Early work in India favored a mixed sulfate-citrate solution ( Ref 12 ), but more recent work used sulfates ( Ref 13 ). Deposits were obtained at low pH levels, near-ambient temperatures, and low current...
Abstract
Chromium alloys yield alloy coatings with properties that range from completely satisfactory to marginally acceptable, depending on the end use. This article provides a detailed description of plating solutions and deposition conditions and rates of chromium-iron, chromium-nickel, and chromium-iron-nickel alloys.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006122
EISBN: 978-1-62708-175-7
... containing ores. The first stage involves a leaching process where the nickel-containing feedstock is blended with ammonium sulfate. This is a continuous process carried out at 90–95 °C (194–203 °F) and 758–827 kPa (110–120 psi). Before the nickel is reduced from the leach solution, cobalt, copper and other...
Abstract
This article discusses the methods for producing powder metallurgy (PM) nickel powders, including carbonyl process, hydrometallurgical process, hydrogen reduction process, and atomization process, as well as their applications. It describes three processes for producing nickel alloy powders: water atomization, high-pressure water atomization, and gas atomization. The article also provides information on the applications of PM hot isostatic pressing in the oil and gas industry.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001229
EISBN: 978-1-62708-170-2
... rates when scale cracking is initiated by flexing, temper-rolling (of strip), or tension leveling ( Ref 2 ). The reaction of H 2 SO 4 with FeO or with scale that is substantially Fe 3 O 4 mixed with iron will form ferrous sulfate and water: (Eq 1) FeO + H 2 SO 4 = FeSO 4...
Abstract
Pickling is the most common of several processes used to remove scale from steel surfaces. This article provides a discussion on pickling solutions, such as sulfuric and hydrochloric acid, and describes the role of inhibitors in acid pickling. It discusses the equipment and processes involved in the batch, continuous, and electrolytic pickling of carbon steel components. The article describes the effects of process variables on scale removal in sulfuric and hydrochloric acid. It concludes with a description of pickling defects, spent pickle liquor disposal, and safety practices.
1