1-20 of 194 Search Results for

molten sulfate

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003609
EISBN: 978-1-62708-182-5
.... Specific examples of the types of corrosion expected for the different metal-fused salt systems are also provided. The metal-fused salt systems include molten fluorides, chloride salts, molten nitrates, molten sulfates, hydroxide melts, and carbonate melts. The article concludes with information on...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003593
EISBN: 978-1-62708-182-5
... gas turbine. Both in understanding and testing for corrosion by molten salts at high temperatures, the relevant salt depth and the gaseous atmosphere must be respected. The chemistry and corrosion have been studied for many fused salt systems: chlorides, fluorides, carbonates, sulfates, hydroxides...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003587
EISBN: 978-1-62708-182-5
... Abstract Molten salts, or fused salts, can cause corrosion by the solution of constituents of the container material, selective attack, pitting, electrochemical reactions, mass transport due to thermal gradients, and reaction of constituents and impurities of the molten salt with the container...
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003827
EISBN: 978-1-62708-183-2
... Metals and Beryllium with Molten Pb-17Li , Proceedings of the 1995 Seventh International Conference on Fusion Reactor Materials , ICFRM-7, Sept 25–29, 1995 ( Obninsk, Russia ), Institute of Physics and Power Engineering; J. Nucl. Mater. , Vol 233–237B , Oct 1996 , p 1383 – 1386 45. Hill...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006787
EISBN: 978-1-62708-295-2
... Fig. 15 . Although heavy ash deposits could be present along the tube crown, the composition of the deposit determines whether or not fireside corrosion occurs. In the presence of molten ash products, the oxide, even in oxidizing environments, becomes unstable and dissolves. Alkali sulfates deposited...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003555
EISBN: 978-1-62708-180-1
... ). These contaminants combine in the gas phase to form alkali metal sulfates; if the temperature of the alloy is below the dewpoint of the alkali sulfate vapors and above the sulfate melting points, molten sulfate deposits are formed ( Ref 28 ). Molten sodium sulfate is the principal agent in causing hot...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005300
EISBN: 978-1-62708-187-0
...); the melting point of the carbonates ranges from 851 to 1339 °C (1564 to 2442 °F); and the melting point of the sulfates ranges from 859 to 1450 °C (1578 to 2642 °F). Oxidizing compounds are used to promote exothermic chemical reactions. They react with the smallest molten aluminum particles that are...
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003842
EISBN: 978-1-62708-183-2
... Abstract This article examines the high-temperature oxidation of silica-forming ceramics under constant temperature and cyclic conditions. The effects of water vapor, impurities, and molten salts are discussed. The article describes the oxidation and corrosion of silica-forming composites...
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004135
EISBN: 978-1-62708-184-9
... rechargeable batteries. Fuel cells are classified into five types: phosphoric acid fuel cell (PAFC), solid polymer electrolyte fuel cell, alkaline electrolyte fuel cell, molten carbonate fuel cell (MCFC), and solid oxide fuel cell. The article presents reactions that occur during charging and discharging of...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003623
EISBN: 978-1-62708-182-5
... Abstract Corrosion resistance can usually be maintained in the welded condition by balancing alloy compositions, shielding molten and hot metal surfaces, and choosing the proper welding parameters. This article describes some of the metallurgical factors that affect corrosion of weldments. It...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001313
EISBN: 978-1-62708-170-2
... Abstract This article addresses surface cleaning, finishing, and coating operations that have proven to be effective for molybdenum, tungsten, tantalum, and niobium. It describes standard procedures for abrasive blasting, molten caustic processing, acid cleaning, pickling, and solvent and...
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003826
EISBN: 978-1-62708-183-2
... hafnium in specific media, namely, water, steam, hydrochloric acid, nitric acid, sulfuric acid, alkalis, organics, molten metals, and gases. Forms of corrosion, namely, galvanic corrosion, crevice corrosion, and pitting corrosion are included. The article explains the corrosion of hafnium alloys such as...
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006519
EISBN: 978-1-62708-207-5
... Abstract Investment casting, in which molten metal is poured into hot molds, allows for the production of aluminum parts with extremely thin sections, knife edges and sharp detail. This article describes the various steps in the investment casting process, including patternmaking and...
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0004050
EISBN: 978-1-62708-183-2
..., form highly corrosive molten sulfate-vanadate deposits; the lowest-melting eutectic in the Na 2 SO 4 -V 2 O 5 system is at approximately 500 °C (930 °F). Alkali metal chlorides, such as NaCl and KCl, present in coal and biomass as well as other low-melting metal chlorides, such as ZnCl 2 and PbCl 2...
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004124
EISBN: 978-1-62708-184-9
..., the range of the composition of corrosive gaseous or molten environments, and the variety of materials that may be used in a given power system. Moreover, corrosion prediction is further complicated because materials often degrade in a high-temperature environment of a given application by more than a...
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004158
EISBN: 978-1-62708-184-9
... (1400 °F). Hot corrosion is often termed sulfidation because sulfides are formed in the metal or in the scale. However, sulfidation can also refer to the gaseous reaction of sulfur with a metal in a manner similar to oxidation, whereas hot corrosion refers to attack of the metal by molten sulfates...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003671
EISBN: 978-1-62708-182-5
... or coated alloys is often difficult because of the range of composition of the corrosive gaseous or molten environments and the variety of materials that may be used. Moreover, corrosion prediction is further complicated, because materials often degrade in a high-temperature environment of a given...
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004156
EISBN: 978-1-62708-184-9
...) to the maximum, the corrosion mechanism is dominated by the formation of a molten phase in the intermediate ash layer. With the active fuel ash corrosion taking place, the rate increases greatly with the metal temperature. Beyond the maximum, the complex sulfates are no longer stable. As a result...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001259
EISBN: 978-1-62708-170-2
... this range. Nonaqueous solutions, especially those based on molten salts, can provide useful alloy deposits. However, these tend to be relatively thick. Thin deposits offer the best prospect for providing lustrous finishes. Post-plating heat treatments can sometimes improve the mechanical...
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003829
EISBN: 978-1-62708-183-2
... slightly lower temperatures by potassium, cesium, and rubidium hydroxides. All the low-melting molten metals attack silver, including mercury, sodium, potassium, lead, tin, bismuth, and indium. The corrosion resistance of silver in various gases is given in Table 6 . Table 6 Corrosion of silver in...