Skip Nav Destination
Close Modal
Search Results for
molten salt bath cleaning
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 280
Search Results for molten salt bath cleaning
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001225
EISBN: 978-1-62708-170-2
... Abstract Molten salt baths are anhydrous, fused chemical baths used at elevated temperatures for a variety of industrial cleaning applications. This article discusses their applications in paint stripping, polymer removal, casting cleaning, glass removal, and plasma/flame spray removal...
Abstract
Molten salt baths are anhydrous, fused chemical baths used at elevated temperatures for a variety of industrial cleaning applications. This article discusses their applications in paint stripping, polymer removal, casting cleaning, glass removal, and plasma/flame spray removal. It provides an overview of the basic design and safety considerations of the salt bath equipment and describes the environmental impact of molten salt bath cleaning.
Image
Published: 01 January 1994
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003213
EISBN: 978-1-62708-199-3
... describes common cleaning processes, including alkaline, electrolytic, solvent, emulsion, molten salt bath, ultrasonic and acid cleaning as well as pickling and abrasive blasting. It also explains how to select the appropriate process for a given soil type and surface composition. abrasive blast...
Abstract
Metal surfaces must often be cleaned before subsequent operations to remove unwanted substances such as pigmented drawing compounds, unpigmented oil and grease, chips and cutting fluids, polishing and buffing compounds, rust and scale, and miscellaneous contaminants. The article describes common cleaning processes, including alkaline, electrolytic, solvent, emulsion, molten salt bath, ultrasonic and acid cleaning as well as pickling and abrasive blasting. It also explains how to select the appropriate process for a given soil type and surface composition.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001388
EISBN: 978-1-62708-173-3
... Abstract This article describes the dip brazing process and the principal types of furnaces used for molten-salt-bath dip-brazing applications. It provides information on equipment maintenance, which is divided into temperature control, control of the liquid, and maintenance of the vessel...
Abstract
This article describes the dip brazing process and the principal types of furnaces used for molten-salt-bath dip-brazing applications. It provides information on equipment maintenance, which is divided into temperature control, control of the liquid, and maintenance of the vessel. The article presents the typical salts used for molten-salt dip brazing of carbon and low-alloy steels with selected filler metals in tabular form. It concludes with information on dip brazing of stainless steels, cast irons, and aluminum alloys and safety precautions of the process.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005820
EISBN: 978-1-62708-165-8
... of water. This is repeated at a pace suitable for the heating capacity of the system until the new bath temperature exceeds the melt point of the target nitrite-nitrate salt mixture. Then agitation should be initiated and dry, granular salt is added (at ratio) until sufficient volume of the desired molten...
Abstract
Molten salt, including nitrite/nitrate salts, is the quenching medium most commonly used in austempering and marquenching of ferrous materials. This article describes the use of molten salts in the quenching of ferrous materials. It provides information on the processing and operation of salt quenching including considerations of time, temperature, environment, and safety, as well as critical characteristics such as the composition of the quenchant, agitation, and water additions.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003220
EISBN: 978-1-62708-199-3
... of stainless steel. This article describes the surface treatment of stainless steels including abrasive blast cleaning, acid pickling, salt bath descaling, passivation treatments, electropolishing, and the necessary coating processes involved. It also describes the surface treatment of heat-resistant alloys...
Abstract
Although stainless steel is naturally passivated by exposure to air and other oxidizers, additional surface treatments are needed to prevent corrosion. Passivation, pickling, electropolishing, and mechanical cleaning are important surface treatments for the successful performance of stainless steel. This article describes the surface treatment of stainless steels including abrasive blast cleaning, acid pickling, salt bath descaling, passivation treatments, electropolishing, and the necessary coating processes involved. It also describes the surface treatment of heat-resistant alloys including metallic contaminant removal, tarnish removal, oxide and scale removal, finishing, and coating processes.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005778
EISBN: 978-1-62708-165-8
... cleaning (that is, sandblasting) or acid pickling prior to carburizing in the noncyanide mixture. It is vital that parts be completely dry before immersing the components in the molten bath. Low-Toxicity and Regenerable Salt Bath Processes <xref rid="a0005778-ref2" ref-type="bibr">(Ref 2...
Abstract
This article describes the uses of the liquid carburizing process carried out in low and high temperature cyanide-containing baths, and details the noncyanide liquid carburizing process which can be accomplished in a bath containing a special grade of carbon. It presents a simple formula for estimating total case depth, and illustrates the influence of carburizing temperature, duration of carburizing, quenching temperature, and quenching medium with the aid of typical hardness gradients. The article provides information on controlling of cyaniding time and temperature, bath composition, and case depth, and presents examples that relate dimensional change to several shapes that vary in complexity. It also provides information on the quenchant removal and salt removal processes, lists the applications of liquid carburizing in cyanide baths, and discusses the process and importance of cyanide waste disposal in detail.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001221
EISBN: 978-1-62708-170-2
... Etching Phosphoric acid is often used as an etchant for nonferrous metals (such as copper, brass, aluminum, and zinc) to enhance paint adhesion. A detergent-bearing iron phosphating solution is often ideal for this sort of combined cleaning and etching approach. Molten Salt Bath Cleaning...
Abstract
This article describes the basic attributes of the most widely used metal surface cleaning processes to remove pigmented drawing compounds, unpigmented oil and grease, chips, cutting fluids, polishing and buffing compounds, rust and scale from steel parts, and residues and lapping compounds from magnetic particle and fluorescent penetrant inspection. The cleaning processes include emulsion cleaning, electrolytic alkaline cleaning, acid cleaning, solvent cleaning, vapor degreasing, alkaline cleaning, ultrasonic cleaning, and glass bead cleaning. The article provides guidelines for choosing an appropriate process for particular applications and discusses eight well-known methods for determining the degree of cleanliness of the work surface.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005300
EISBN: 978-1-62708-187-0
... Castings” in this Volume) Aluminum Fluxing Fluxing is a term commonly used in foundries, especially within the melting department work force, to refer only to the addition of chemical compounds to clean molten aluminum alloy baths in either the furnaces (melting or holding) or the transfer...
Abstract
Aluminum fluxing is a step in obtaining clean molten metal by preventing excessive oxide formation, removing nonmetallic inclusions from the melt, and preventing and/or removing oxide buildup on furnace walls. This article discusses the solid fluxes and gas fluxes used in foundries. It reviews the classification of solid fluxes depending on their use and function at the foundry operation. These include cover fluxes, drossing fluxes, cleaning fluxes, and furnace wall cleaner fluxes. The article also examines the operational practices and applications of the flux injection in the foundries. It describes the applications of the aluminum fluxing such as crucible furnaces, transfer ladles, reverberatory furnaces, and holding/casting furnaces.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001455
EISBN: 978-1-62708-173-3
... depletes the level of the molten salt in the dip pot, necessitating more-frequent additions of dry flux to the bath and resulting in higher costs. The bulk of the salt is removed by immersing the fixture and brazement in a bath of boiling water. Then, the brazement is separated from the fixture and put...
Abstract
Aluminum, a commonly used base material for brazing, can be easily fabricated by most manufacturing methods, such as machining, forming, and stamping. This article outlines non-heat-treatable wrought alloys typically used as base metals for the brazing process. It highlights chloride-active and fluoride-active types of fluxes that are used for torch, furnace, or dip brazing processes. The article explains the steps to be performed, including the designing of joints, preblaze cleaning, assembling, brazing techniques (dip brazing, furnace and torch brazing, fluxless vacuum brazing), flux removal techniques, and postbraze heat treatment processes. It concludes with information on the safety precautions to be followed during the brazing process.
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005929
EISBN: 978-1-62708-166-5
... carburizing, liquid nitriding, austempering, martempering (marquench and tempering), reheating, and other operations. Molten salt baths have a number of unique process advantages including efficient furnaces for heating and more rapid heating rates and more uniform temperature control. Molten salts also...
Abstract
This article provides information on the salt baths used for a variety of heat treatments, including heating, quenching, interrupted quenching (austempering and martempering), case hardening, and tempering. It describes two general types of salt bath systems for steel hardening: the first type uses atmosphere austenitizing followed by salt quench and the second type employs austenitizing salt baths with rapid transfer to the quench salt. The article provides a detailed account on the construction, advantages and disadvantages, and limitations of isothermal quenching furnaces, submerged-electrode furnaces, immersed-electrode furnaces, and externally heated furnaces. It discusses the important applications of various furnace designs, including the austempering of ductile iron, the hardening of tool steels, and the isothermal annealing of high-alloy steels.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006302
EISBN: 978-1-62708-179-5
.... In preparation for brazing, the steel plate was cleaned by degreasing in trichlorethylene. The gray iron liners were cleaned electrolytically in a bath of molten salt at 460 °C (860 °F)⋅for a total time of 35 min, after which they were immersed first in cold water and then in water at 70 °C (160 °F). (Details...
Abstract
Brazing and soldering are done at temperatures below the solidus temperature of the base material but high enough to melt the filler metal and allow the liquid filler metal to wet the surface and spread into the joint gap by capillary action. This article discusses the common advantages of both brazing and soldering. It describes the brazing and soldering of cast irons, as well as the selection of brazing filler material. The article discusses various brazing methods: torch brazing, induction brazing, salt-bath brazing, and furnace brazing. It concludes with information on the application examples of brazing of cast iron.
Series: ASM Handbook
Volume: 4F
Publisher: ASM International
Published: 01 February 2024
DOI: 10.31399/asm.hb.v4F.a0007009
EISBN: 978-1-62708-450-5
... and also presents safety precautions recommended for the use of martempering oils. Finally, the article explains the effect of agitation and water in a molten salt bath. austempering marquenching martempering molten salt bath steel MARTEMPERING is a form of delayed, or interrupted, quenching...
Abstract
Martempering and austempering processes may eliminate the need for conventional oil quenching and tempering. This article presents the suitability of steels for martempering and austempering. It discusses the compositions of oils suitable for marquenching and modified marquenching and also presents safety precautions recommended for the use of martempering oils. Finally, the article explains the effect of agitation and water in a molten salt bath.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004218
EISBN: 978-1-62708-184-9
... for various furnace parts, such as electrodes, thermocouple protection tubes, and pots for salt baths. Molten-salt corrosion of ferrous and nonferrous metals has been reported ( Ref 13 ), showing embrittlement of the alloy via grain-boundary penetration. Corrosion data in molten sodium-potassium nitrate...
Abstract
The high-temperature corrosion processes that are most frequently responsible for the degradation of furnace accessories are oxidation, carburization, decarburization, sulfidation, molten-salt corrosion, and molten-metal corrosion. This article discusses each corrosion process, along with the corrosion behavior of important engineering alloys. It describes the corrosion of plating, anodizing, and parts of pickling equipment such as tanks, wirings and bus bars, racks, anode splines, pumps, and heaters.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005802
EISBN: 978-1-62708-165-8
... transformation diagram showing difference between conventional hardening, austempering, and martempering (step quenching). Adapted from Ref 3 The interrupted quench hardening treatments attempt to equalize the temperature within the workpiece (quenched into a molten salt bath) before subsequent...
Abstract
This article describes the advantages of martempering and the use of oil and salt as quenchants in the martempering process. It also discusses safety precautions to be followed by an operator and reviews the steels that are suitable for martempering. The article provides information on the importance of controlling process variables in martempering, including austenitizing temperature, temperature of the martempering bath, time in the bath, salt contamination, water additions to salt, agitation, and the rate of cooling from the martempering bath. It also describes specific situations in which distortion problems have been encountered during martempering. The article contains tables that indicate typical applications of martempering in salt and oil by listing commonly treated steel parts and giving details of martempering procedures and hardness requirements. The article also lists equipment requirements for oil and salt martempering of steel.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005776
EISBN: 978-1-62708-165-8
.... case depth case hardness liquid nitriding liquid nitrocarburizing safety precautions salt bath furnaces salt bath nitrocarburizing steel LIQUID NITRIDING (nitriding in a molten salt bath) employs the same temperature range as gas nitriding, that is, 510 to 580 °C (950 to 1075 °F). The case...
Abstract
The liquid nitriding process has several proprietary modifications and is applied to a wide variety of carbon steels, low-alloy steels, tool steels, stainless steels, and cast irons. This article discusses the applications, subclassifications, operating procedures, and maintenance procedures, as well as the equipment used (salt bath furnaces) and safety precautions to be undertaken during the liquid nitriding process. It describes the different types of liquid nitriding process, namely, liquid pressure nitriding, aerated bath nitriding, and liquid nitrocarburizing. Environmental considerations and the increased cost of detoxification of cyanide-containing effluents have led to the development of low-cyanide salt bath nitrocarburizing treatments. The article reviews the wear and antiscuffing characteristics of the compound zone produced in salt baths with the help of Falex scuff test.
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005958
EISBN: 978-1-62708-168-9
... (e.g., oxidation or decarburization) at the surface of the tools. To fulfill these requirements different process solutions were developed over the years. Salt Bath Furnaces Molten salts of various compositions are well adapted to all operations in the heat treatment of tool steels. For tools...
Abstract
This article provides a detailed discussion on the heating equipment used for austenitizing, quenching, and tempering tool steels. These include salt bath furnaces, controlled atmosphere furnaces, fluidized-bed furnaces, and vacuum furnaces. The article discusses the types of nitriding and nitrocarburizing processes and the equipment required for heat treating tool steels to improve hardness, wear resistance, and thermal fatigue. The various nitriding and nitrocarburizing processes covered are salt bath nitrocarburizing, gas nitriding and nitrocarburizing, and plasma nitriding and nitrocarburizing.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001313
EISBN: 978-1-62708-170-2
..., friable; SF, semi-friable; T, tough. Source: Ref 1 Chemical Cleaning and Polishing of Molybdenum and Tungsten Surfaces Molten Caustic Process To remove the heavy oxide scale from tungsten, molybdenum, and their alloys, the molten caustic process is used. The molten caustic bath can...
Abstract
This article addresses surface cleaning, finishing, and coating operations that have proven to be effective for molybdenum, tungsten, tantalum, and niobium. It describes standard procedures for abrasive blasting, molten caustic processing, acid cleaning, pickling, and solvent and electrolytic cleaning as well as mechanical grinding and finishing. The article also provides information on common plating and coating methods, including electroplating, anodizing, and oxidation-resistant coatings.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001273
EISBN: 978-1-62708-170-2
... coils of low-carbon steel in ribbon form first through appropriate cleaning and tinning baths and then through a stream of molten babbitt, which is gravity cast on the moving strip. The strip is immediately water-chilled from below. After excess babbitt is removed, the stock is recoiled and is ready...
Abstract
Babbitting is a process by which relatively soft metals are bonded chemically or mechanically to a stronger shell or stiffener which supports the weight and torsion of a rotating, oscillating, or sliding shaft. This article focuses on workpiece preparation and babbitting methods. Prior to casting, the workpiece must be scrupulously prepared by various cleaning, fluxing, and tinning steps. Babbitting of bearing shells can be accomplished by three methods, namely, static babbitting, centrifugal casting, and metal spray babbitting.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001307
EISBN: 978-1-62708-170-2
... must follow pickling. Oxide and Scale Removal The most widely used methods for removing oxides or scale from heat-resistant alloys, in order of decreasing preference based on economic considerations, are acid pickling, abrasive cleaning by tumbling or blasting, and descaling in molten salt...
Abstract
This article describes the methods for removing metallic contaminants, tarnish, and scale resulting from hot-working or heat-treating operations on nickel-, cobalt-, and iron-base heat-resistant alloys. It provides a brief description of applicable finishing and coating processes, including polishing, electroplating, ceramic coatings, diffusion coatings, and shot-peening. The article presents numerous examples that identify cleaning and finishing problems and the procedures used to solve them.
1