Skip Nav Destination
Close Modal
Search Results for
molten salt
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 603
Search Results for molten salt
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001225
EISBN: 978-1-62708-170-2
... Abstract Molten salt baths are anhydrous, fused chemical baths used at elevated temperatures for a variety of industrial cleaning applications. This article discusses their applications in paint stripping, polymer removal, casting cleaning, glass removal, and plasma/flame spray removal...
Abstract
Molten salt baths are anhydrous, fused chemical baths used at elevated temperatures for a variety of industrial cleaning applications. This article discusses their applications in paint stripping, polymer removal, casting cleaning, glass removal, and plasma/flame spray removal. It provides an overview of the basic design and safety considerations of the salt bath equipment and describes the environmental impact of molten salt bath cleaning.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003581
EISBN: 978-1-62708-182-5
... Abstract Molten salts, in contrast to aqueous solutions in which an electrolyte (acid, base, salt) is dissolved in a molecular solvent, are essentially completely ionic. This article begins with an overview of the thermodynamics of cells and classification of electrodes for molten salts...
Abstract
Molten salts, in contrast to aqueous solutions in which an electrolyte (acid, base, salt) is dissolved in a molecular solvent, are essentially completely ionic. This article begins with an overview of the thermodynamics of cells and classification of electrodes for molten salts: reference electrodes and indicator electrodes. It explains that corrosion in molten salts can be caused by the solubility of the metal in the salt, particularly if the metal dissolves in its own chloride. The article describes the factors that affect the corrosion of titanium, namely, the titanium chloride content of the magnesium chloride melt, magnesium or sodium content, and oxygen content of the product. It concludes with a discussion on the oxygen activity in the titanium metal product.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003609
EISBN: 978-1-62708-182-5
... Abstract This article discusses two general mechanisms of corrosion in molten salts. One is the metal dissolution caused by the solubility of the metal in the melt. The second and most common mechanism is the oxidation of the metal to ions. Specific examples of the types of corrosion expected...
Abstract
This article discusses two general mechanisms of corrosion in molten salts. One is the metal dissolution caused by the solubility of the metal in the melt. The second and most common mechanism is the oxidation of the metal to ions. Specific examples of the types of corrosion expected for the different metal-fused salt systems are also provided. The metal-fused salt systems include molten fluorides, chloride salts, molten nitrates, molten sulfates, hydroxide melts, and carbonate melts. The article concludes with information on prevention of molten salt corrosion.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003593
EISBN: 978-1-62708-182-5
... to study fused-salt corrosion. fused salt fused salt corrosion hot corrosion molten salt corrosion sodium sulfate system THE OPERATION of high-temperature engineering systems, despite their associated materials problems, is inherent to advanced technologies that strive to gain an advantage...
Abstract
Metals and ceramics exposed to high-temperature salt solutions are susceptible to a form of corrosion caused by fused salts accumulating on unprotected surfaces. This article examines the electrochemistry of such hot corrosion processes, focusing on sodium sulfate systems generated by the combustion of fossil fuels. It explains how salt chemistry, including acid/base and oxidizing properties, affects corrosion rates and mechanisms. The article also provides information on electrochemical testing and explains how Pourbaix methods, normally associated with aqueous corrosion, can be used to study fused-salt corrosion.
Image
Published: 01 January 1994
Fig. 2 Cutaway view of a salt bath furnace incorporating an agitated molten salt bath and a sludge settling zone
More
Image
Published: 01 December 1998
Image
Published: 01 January 2005
Fig. 16 Flow chart of operations for molten-salt descaling, neutralizing pickling, and final pickling of titanium alloys Solution No. Type of solution Composition of solution Operating temprature Cycle time, min °C °F 1 Descale 60–90% NaOH, rem NaNO 3 and Na 2 CO 3 425
More
Image
Published: 30 September 2014
Fig. 2 Typical cooling and cooling-rate curves for a nitrate-base molten salt bath at 255 °C (495 °F). No agitation or water addition. Average cooling rate from 650 to 260 °C (1200 to 500 °F) was 33.6 °C/s (60.5 °F/s). Source: Ref 7
More
Image
Published: 30 September 2014
Fig. 33 Quenching in a molten salt occurs at a uniform rate, showing typical cooling and cooling rate curves for molten salt at 255 °C (495 °F). No agitation or water addition. Source: Ref 9
More
Image
Published: 30 September 2014
Fig. 34 Cooling rates of a silver ball 20 mm (0.8 in.) in diameter in molten salt at various temperatures. Source: Ref 5
More
Image
in Zirconium and Hafnium
> Properties and Selection: Nonferrous Alloys and Special-Purpose Materials
Published: 01 January 1990
Image
Published: 01 January 1994
Image
Published: 15 January 2021
Fig. 23 Effect of molten salt on hot corrosion at 700 °C (1290 °F) in air. With the lower melting temperatures of salt mixtures, the corrosion rate increases with increasing volume fraction of liquid. Courtesy of Z. Tang and B. Gleeson, University of Pittsburgh
More
Image
Published: 01 January 2003
Fig. 3 Effect of molten salt corrosion on nickel-base and stainless steel alloys. In all four examples, chromium depletion (dealloying) was the result of prolonged exposure. Accompanying chromium depletion was the formation of subsurface voids, which did not connect with the surface
More
Image
Published: 01 January 2003
Image
Published: 01 January 1993
Fig. 1 Principal types of furnaces used for molten-salt-bath dip-brazing applications. (a) and (b) externally heated; (c) and (d) internally heated
More
Image
Published: 31 August 2017
Fig. 5 Malleable-iron-to-steel fitting assembly dip brazed in molten salt ( Example 3 ). Source: Ref 10
More
Image
Published: 01 February 2024
Image
Published: 01 February 2024
Fig. 28 Schematic illustration of the Liscic molten salt bath circulation system. Source: Ref 43
More
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003587
EISBN: 978-1-62708-182-5
... Abstract Molten salts, or fused salts, can cause corrosion by the solution of constituents of the container material, selective attack, pitting, electrochemical reactions, mass transport due to thermal gradients, and reaction of constituents and impurities of the molten salt with the container...
Abstract
Molten salts, or fused salts, can cause corrosion by the solution of constituents of the container material, selective attack, pitting, electrochemical reactions, mass transport due to thermal gradients, and reaction of constituents and impurities of the molten salt with the container material. This article describes a test method performed using thermal convection loop for corrosion studies of molten salts. It discusses the purification of salts that are used in the Oak Ridge molten salt reactor experiment. The article also reviews the corrosion characteristics of nitrates/nitrites and fluoride salts with the aid of illustrations and equations.
1