1-20 of 470 Search Results for

molten metal bath

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005815
EISBN: 978-1-62708-165-8
.... The article discusses the embrittlement problems associated with tempering. Four types of equipment are used for tempering, namely, convection furnaces, salt bath furnaces, oil bath equipment and molten metal baths. Special procedures for tempering are briefly reviewed. cracking dimensional change...
Image
Published: 31 October 2011
Fig. 18 Schematic of electroslag welding process using separate filler wire to increase deposition rate and absorb excess thermal energy in molten metal bath. Source: Ref 28 More
Image
Published: 01 January 1993
Fig. 14 Schematic of electroslag welding process using separate filler wire to increase deposition rate and absorb excess thermal energy in molten metal bath. Source: Ref 28 More
Image
Published: 01 December 1998
Fig. 12 Schematic of a wet-hearth reverberatory furnace heated by conventional fossil fuel showing the position of the hydrogen and oxygen gases relative to the molten metal bath. Arrows indicate heat radiated from top of furnace chamber. More
Image
Published: 01 December 1998
Fig. 2 A cross section of a coreless-type induction furnace showing water-cooled copper induction coil and key structural components. The entire molten metal bath (which serves as the secondary) is surrounded by the coil (the primary) that encircles the working lining. More
Image
Published: 01 December 2008
Fig. 1 Components of a coreless-type induction furnace. (a) Operational elements. (b) Cross section showing water-cooled copper induction coil and key structural components. The entire molten metal bath (which serves as the secondary) is surrounded by the coil (the primary) that encircles More
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003173
EISBN: 978-1-62708-199-3
... using reactions in the molten metal bath) and treating the metal (adding small amounts of materials that affect the nucleation and growth of the solid during solidification). Melting furnaces derive their energy from combustion of fossil fuels or from electric power. The choice of which type of melting...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005350
EISBN: 978-1-62708-187-0
... of the bath and the flue at the other end. The flue (stack) was designed to be strong enough to draw the flame over the bath. The roof was slanted to bounce or reverberate the flame (similar to sound echoes) off the ceiling, down across the metal to be melted in the molten bath, and then onto the flue...
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005992
EISBN: 978-1-62708-166-5
... are the most highly alloyed tools steels. For high-speed in hardening temperature, total time is allowed at 4 to 6 minutes per inch of thickness but never long enough to “blister”. Tempering Tempering may be performed in convection furnaces, salt baths or even by immersion in molten metal. Induction...
Book Chapter

By Roy E. Beal
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001396
EISBN: 978-1-62708-173-3
... operating solder pots. dip soldering molten solder bath personnel safety solder pots soldering equipment DIP SOLDERING (DS) is accomplished by submerging parts to be joined into a molten solder bath. The molten bath can be any suitable filler metal, but the selection is usually confined...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001225
EISBN: 978-1-62708-170-2
... to 1200 °F), substrates to be cleaned are restricted to those materials that are compatible with the operating temperatures of the various processes. Because these baths are also chemically active, the substrate must also be chemically compatible with the various molten salt systems. While most metals...
Book Chapter

By Daryl D. Peter
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001388
EISBN: 978-1-62708-173-3
... carbon steel cast iron dip brazing low-alloy steel molten-salt-bath dip-brazing safety precautions stainless steel DIP BRAZING (DB) is one of the oldest brazing processes. The materials to be joined are immersed in a hot liquid, which is either a molten flux or a molten filler metal...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005300
EISBN: 978-1-62708-187-0
... aluminum oxide (Al 2 O 3 ) film on the surface bath, which acts as a protective oxidation barrier for the molten metal underneath the film. The amorphous films have been referred to as young films ( Ref 5 ). The two oxidation reactions that occur when molten aluminum contacts air proceed according...
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005944
EISBN: 978-1-62708-166-5
..., its general stability. On the other hand, certain disadvantages exist. Steel is lighter than lead; therefore the tool to be quenched must be held down in the bath. Secondly, the ready oxidation of the molten metal surface is an adverse factor. It should be noted that the oxide formed is not very...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005261
EISBN: 978-1-62708-187-0
... mold processes as die casting (low-pressure die casting, gravity die casting, high-pressure die casting, etc.). Low-pressure casting is a process where molten metal is introduced to the mold by the application of pressure to a hermetically-sealed metal bath, forcing the molten metal up through...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005591
EISBN: 978-1-62708-174-0
... can be considered a progressive melting and casting process in which the heat of a bath of molten flux is used to melt the filler metal and the edges of the plates to be welded. Electric arc occurs only at the beginning of the process, and once a molten bath is achieved, the arc is extinguished...
Image
Published: 01 December 2008
is then positioned above the melting furnace, and the fill pipe is lowered into the melt chamber but above the bath. Vacuum is applied to the mold chamber, purging the mold cavity with argon. (c) The fill pipe is then lowered into the molten bath, and additional vacuum is applied to the mold chamber, causing liquid More
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003213
EISBN: 978-1-62708-199-3
... cleaning acid cleaning alkaline cleaning electrolytic cleaning emulsion cleaning molten salt bath cleaning pickling solvent cleaning ultrasonic cleaning Cleaning Process Selection IN SELECTING A METAL CLEANING PROCESS, many factors must be considered, including (a) the nature of the soil...
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005922
EISBN: 978-1-62708-166-5
... difference between the metal (probe) and the lead bath. Viscosity-temperature relationship of molten lead Table 2 Viscosity-temperature relationship of molten lead Temperature, °C (°F) Viscosity, mPa · s 400 (750) 2.32 600 (1110) 1.55 700 (1290) 1.37 800 (1470) 1.24 Source...
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005929
EISBN: 978-1-62708-166-5
... is limited only by the conductivity of the metal itself and by the ability of the furnace to supply energy at a rate fast enough to maintain the bath temperature. The rate of heating in salt baths is considerably faster than in furnaces heated by radiation or gaseous convection, because in molten salt...