1-20 of 1048

Search Results for mold steels

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005976
EISBN: 978-1-62708-168-9
... Abstract This article provides a discussion on heat treating practices, namely, carburizing, normalizing, annealing, stress relieving, preheating, austenitizing, quenching, tempering, and nitriding for various grades of mold and corrosion-resistant tool steels. It details the characteristics...
Image
Published: 01 October 2014
Fig. 1 Tempering characteristics of carburized mold steels. (a) Upper curve represents steel carburized in hardwood charcoal 915 to 925 °C (1675 to 1700 °F) for 8 h, air cooled in pack, reheated at 940 to 955 °C (1725 to 1750 °F), cooled in air and tempered. Middle curve represents steel More
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003114
EISBN: 978-1-62708-199-3
... Abstract This article discusses the characteristics, composition limits, and classification of wrought tool steels, namely high-speed steels, hot-work steels, cold-work steels, shock-resisting steels, low-alloy special-purpose steels, mold steels, water-hardening steels, powder metallurgy tool...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003202
EISBN: 978-1-62708-199-3
... steels, high-speed tool steels, low-alloy special-purpose tool steels, and mold steels. The article presents tables that list the temperature ranges, holding time, and hardness values for all of these heat treating processes. heat treating high-carbon high-chromium cold work tool steels high...
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005946
EISBN: 978-1-62708-168-9
.... Tool steels are used in various industrial applications that require some type of mold, die, or mechanical device. Tool steels also are a complex class of steels with compositions close to carbon steel or more highly alloyed grades. Tool steels generally are classified according to three main...
Book Chapter

By Thomas S. Piwonka
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003170
EISBN: 978-1-62708-199-3
... Abstract Metal casting is the manufacturing method in which a metal or an alloy is melted, poured into a mold, and allowed to solidify. Typical uses of castings include municipal hardware, water distribution systems (pipes, pumps, and valves), automotive components (engine blocks, brakes...
Book Chapter

Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005299
EISBN: 978-1-62708-187-0
... Abstract Sand mold and permanent mold casting are the major methods for shape casting of steels, with production closely split among green sand, chemically bonded sand, and permanent mold processes. This article describes key aspects of the steel casting process, including steel solidification...
Book Chapter

By Y.V. Murty
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005259
EISBN: 978-1-62708-187-0
... of the faster heat extraction from permanent molds, there is usually an increase in the quality (especially properties) of the castings produced in this type of mold. Metal Molds Steel molds are recommended for centrifugal casting. It is very important that the molds be perfect and free of any defects...
Book Chapter

By Alan M. Bayer, Lee R. Walton
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001041
EISBN: 978-1-62708-161-0
... discusses surface treatments, fabrication issues, and in-service measures of performance. cold-work tool steels high-speed tool steels hot-work tool steels low-alloy special-purpose tool steels mold steels shock-resisting steels tool steels water-hardening steels wrought tool steels...
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005980
EISBN: 978-1-62708-168-9
... 65 x 12 mm 3 (2.6 x 2.6 x 0.5 in. 3 ) after quenching and tempering to 61 HRC in thickness (= rolling direction) and width. (“9%Cr-MoV” = Böhler K360, “8%Cr-MoV” = Böhler K340). Source: Ref 8 Distortion of Corrosion-Resistant Plastic Mold Steels Corrosion-resistant plastic mold steels...
Book Chapter

Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004041
EISBN: 978-1-62708-185-6
... on the hardness of the die/mold steel and the chip load High-speed control with high-speed data and look-forward capability to avoid data starvation (the look-forward capability tracks surface geometry, allowing the machine to accelerate and decelerate effectively for maintaining the prescribed surface contour...
Book Chapter

By Thomas S. Piwonka
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002484
EISBN: 978-1-62708-194-8
...—a sphere of a given volume will freeze more slowly than a thin plate of the same volume because the plate has much more surface area to transfer the same quantity of heat into the mold. Because the sphere solidifies more slowly, its microstructure will be coarser than that of the plate even if both...
Book Chapter

By Scott McIntyre
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005252
EISBN: 978-1-62708-187-0
... than molds made from green sand or baked sand, as shown by the following comparison for small steel castings (up to 2.3 kg, or 5 lb, weight) made by three processes: Process Surface finish μm μin. Shell mold 3–6 125–250 Baked sand mold 6–12 250–500 Green sand mold 12.5–25 500...
Book Chapter

Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002181
EISBN: 978-1-62708-188-7
..., milling, and sawing. The article explains the machining of the following tool steels: water hardening; types A, D and O cold-work; hot work; high speed, low-alloy special-purpose; and low-carbon mold. It details the machining of tool steel gears. The article also discusses the grinding of tool steels...
Image
Published: 01 January 2002
Fig. 9 Plastic mold die made from AISI S7 tool steel that was found to be cracked before use. A crack followed the lower recessed contour of the large gear teeth and had an average depth of 1.6 mm ( 1 16 in.). Smaller cracks were also observed on the flat surfaces. (a) Actual size More
Image
Published: 01 January 2002
Fig. 28 (a) AISI 420 stainless steel mold containing a defect (arrow) observed after polishing the inside diameter surface. (b) Microscopic examination revealed a large silicate inclusion (unetched). More
Image
Published: 01 January 2002
Fig. 30 Permanent mold of 4130 steel for centrifugal casting of gray- and ductile-iron pipe that failed because of localized overheating. The failure was caused by splashing of molten metal at the spigot end. Subsequent overheating resulted in mold-wall spalling and scoring, details of which More
Image
Published: 01 December 2008
Fig. 46 This thin-wall steel casting required rapid pouring to fill the mold completely. Three cores obstructed the free flow of metal, creating eddies that resulted in defects. Redesign of cores as shown, had it been otherwise acceptable, would have solved the problem of metal flow. More
Image
Published: 01 December 2008
Fig. 1 A 17-4 PH stainless steel ceramic mold casting, the wall thickness of which was reduced, from the presumed practicable minimum of 0.150 to 0.080 in., without appreciably affecting the soundness of castings produced More
Image
Published: 01 December 2008
Fig. 9 This thin-wall steel casting required rapid pouring to fill the mold completely. Three ores obstructed the free flow of metal, creating eddies that resulted in defects. Redesign of cores as shown, had it been otherwise acceptable, would have solved the problem of metal flow. More