Skip Nav Destination
Close Modal
By
Rafael Agnelli Mesquita, Reinhold Schneider, Cristiane Sales Gonçalves
By
Rafael A. Mesquita, Reinhold E. Schneider
By
Reinhold Schneider, Rafael Mesquita, Wolfgang Schützenhöfer
Search Results for
mold steels
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1048
Search Results for mold steels
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Heat Treating of Mold Steels and Corrosion-Resistant Tool Steels
Available to PurchaseSeries: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005976
EISBN: 978-1-62708-168-9
... Abstract This article provides a discussion on heat treating practices, namely, carburizing, normalizing, annealing, stress relieving, preheating, austenitizing, quenching, tempering, and nitriding for various grades of mold and corrosion-resistant tool steels. It details the characteristics...
Abstract
This article provides a discussion on heat treating practices, namely, carburizing, normalizing, annealing, stress relieving, preheating, austenitizing, quenching, tempering, and nitriding for various grades of mold and corrosion-resistant tool steels. It details the characteristics of various grades of mold and corrosion-resistant tool steels, including type P20, type P20Mod, AISI type 420, and AISI type 440B.
Image
Tempering characteristics of carburized mold steels. (a) Upper curve repres...
Available to Purchase
in Heat Treating of Mold Steels and Corrosion-Resistant Tool Steels
> Heat Treating of Irons and Steels
Published: 01 October 2014
Fig. 1 Tempering characteristics of carburized mold steels. (a) Upper curve represents steel carburized in hardwood charcoal 915 to 925 °C (1675 to 1700 °F) for 8 h, air cooled in pack, reheated at 940 to 955 °C (1725 to 1750 °F), cooled in air and tempered. Middle curve represents steel
More
Book Chapter
Tool Steels
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003114
EISBN: 978-1-62708-199-3
... Abstract This article discusses the characteristics, composition limits, and classification of wrought tool steels, namely high-speed steels, hot-work steels, cold-work steels, shock-resisting steels, low-alloy special-purpose steels, mold steels, water-hardening steels, powder metallurgy tool...
Abstract
This article discusses the characteristics, composition limits, and classification of wrought tool steels, namely high-speed steels, hot-work steels, cold-work steels, shock-resisting steels, low-alloy special-purpose steels, mold steels, water-hardening steels, powder metallurgy tool steels, and precision-cast tool steels. It describes the effects of surface treatments on the basic properties of tool steels, including hardness, resistance to wear, deformation, and toughness. The article provides information on fabrication characteristics of tool steels, including machinability, grindability, weldability, and hardenability, and presents a short note on machining allowances.
Book Chapter
Heat Treating of Tool Steels
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003202
EISBN: 978-1-62708-199-3
... steels, high-speed tool steels, low-alloy special-purpose tool steels, and mold steels. The article presents tables that list the temperature ranges, holding time, and hardness values for all of these heat treating processes. heat treating high-carbon high-chromium cold work tool steels high...
Abstract
All tool steels are heat treated to develop specific combinations of wear resistance, resistance to deformation or breaking under loads, and resistance to softening at elevated temperature. This article describes recommended heat treating practices, such as normalizing, annealing, austenitizing, quenching, preheating, and tempering commonly employed in certain steels. These are water-hardening tool steels, shock-resisting tool steels, oil-hardening cold-work tool steels, medium-alloy air-hardening cold-work tool steels, high-carbon high-chromium cold-work tool steels, hot-work tool steels, high-speed tool steels, low-alloy special-purpose tool steels, and mold steels. The article presents tables that list the temperature ranges, holding time, and hardness values for all of these heat treating processes.
Book Chapter
Introduction to Heat Treating of Tool Steels
Available to PurchaseSeries: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005946
EISBN: 978-1-62708-168-9
.... Tool steels are used in various industrial applications that require some type of mold, die, or mechanical device. Tool steels also are a complex class of steels with compositions close to carbon steel or more highly alloyed grades. Tool steels generally are classified according to three main...
Abstract
Tool steels are an important class of steels due to their distinct applications and their specific heat treating issues. This article provides an overview of the classification and production of tool steels, and discusses the procedures and process control requirements for heat treating principal types of tool steels. It reviews the various heat treating processes, namely, normalizing, annealing, stress relieving, austenitizing, quenching, and tempering, and surface treatments and cold treating. The article also provides information on the applicability of these processes to various types of tool steels.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003170
EISBN: 978-1-62708-199-3
... Abstract Metal casting is the manufacturing method in which a metal or an alloy is melted, poured into a mold, and allowed to solidify. Typical uses of castings include municipal hardware, water distribution systems (pipes, pumps, and valves), automotive components (engine blocks, brakes...
Abstract
Metal casting is the manufacturing method in which a metal or an alloy is melted, poured into a mold, and allowed to solidify. Typical uses of castings include municipal hardware, water distribution systems (pipes, pumps, and valves), automotive components (engine blocks, brakes, steering and suspension components, etc.), prosthetics, and gas turbine engine hardware. This introduction explains the steps involved in making a casting using a simplified flow diagram, and discusses the ferrous and nonferrous alloys used for metal casting.
Book Chapter
Shape Casting of Steel
Available to PurchaseBook: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005299
EISBN: 978-1-62708-187-0
... Abstract Sand mold and permanent mold casting are the major methods for shape casting of steels, with production closely split among green sand, chemically bonded sand, and permanent mold processes. This article describes key aspects of the steel casting process, including steel solidification...
Abstract
Sand mold and permanent mold casting are the major methods for shape casting of steels, with production closely split among green sand, chemically bonded sand, and permanent mold processes. This article describes key aspects of the steel casting process, including steel solidification characteristics, melting practices, melt treatment, and feeding of the molten steel into the mold used in steel foundries. It discusses the features of melting furnaces used in direct arc melting and induction melting. It reviews factors such as wall thickness and designing for avoidance of hot spots. The article explains the sand casting and permanent mold casting of steel. The process design and casting of thin sections are also discussed.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005259
EISBN: 978-1-62708-187-0
... of the faster heat extraction from permanent molds, there is usually an increase in the quality (especially properties) of the castings produced in this type of mold. Metal Molds Steel molds are recommended for centrifugal casting. It is very important that the molds be perfect and free of any defects...
Abstract
Vertical centrifugal casting machines, installed below the ground level for maximum operator safety, are used for producing bushings and castings that are relatively large in diameter and short in length. This article discusses the mold design for different types of sand molds and permanent molds and their production considerations. It describes the speed of rotation, mold speeds curves, and pouring techniques that are considered in the operation of vertical centrifugal casting machines.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001041
EISBN: 978-1-62708-161-0
... discusses surface treatments, fabrication issues, and in-service measures of performance. cold-work tool steels high-speed tool steels hot-work tool steels low-alloy special-purpose tool steels mold steels shock-resisting steels tool steels water-hardening steels wrought tool steels...
Abstract
Tool steels are any steel used to make tools for cutting, forming, or shaping manufactured parts. Most tool steels are wrought products alloyed with relatively large amounts of tungsten, molybdenum, vanadium, manganese, and/or chromium. The article describes a wide variety of tool steels, including high-speed steels, hot and cold-work steels, shock-resisting steels, and special-purpose steels. Hot-work steels are designed to withstand excessive amounts of heat, pressure, and abrasion, suiting them for punching, shearing, and high-temperature forming applications. Cold-work tool steels have exceptional dimensional stability and wear resistance, but lack the alloy content necessary to resist softening at temperatures above 205 to 260 deg C. The article examines standard designations for all tool steel types and provides corresponding composition and property ranges. It also discusses surface treatments, fabrication issues, and in-service measures of performance.
Book Chapter
Distortion in Tool Steels
Available to PurchaseSeries: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005980
EISBN: 978-1-62708-168-9
... 65 x 12 mm 3 (2.6 x 2.6 x 0.5 in. 3 ) after quenching and tempering to 61 HRC in thickness (= rolling direction) and width. (“9%Cr-MoV” = Böhler K360, “8%Cr-MoV” = Böhler K340). Source: Ref 8 Distortion of Corrosion-Resistant Plastic Mold Steels Corrosion-resistant plastic mold steels...
Abstract
Distortion, encompassing all irreversible dimensional changes, is of two main types: size distortion and shape distortion. This article provides an overview of the nature and causes of distortion and discusses the process and material aspects of distortion specific to steels and tool steels. It also discusses the prediction of distortion and residual stresses by heat treatment simulation for optimizing production processes. The advantages and limitations of heat treatment simulation are also described.
Book Chapter
Die Manufacturing and Finishing
Available to PurchaseSeries: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004041
EISBN: 978-1-62708-185-6
... on the hardness of the die/mold steel and the chip load High-speed control with high-speed data and look-forward capability to avoid data starvation (the look-forward capability tracks surface geometry, allowing the machine to accelerate and decelerate effectively for maintaining the prescribed surface contour...
Abstract
This article reviews the methods of machining and finishing forging dies. It illustrates different stages in die manufacturing. The article provides a brief description on requirements and characteristics of high-speed machining tools, including feed rates, spindle speed, surface cutting speeds, and high acceleration and deceleration capabilities. It discusses electrodischarge machining process and electrochemical machining process. The article concludes with information on die-making methods.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002484
EISBN: 978-1-62708-194-8
...—a sphere of a given volume will freeze more slowly than a thin plate of the same volume because the plate has much more surface area to transfer the same quantity of heat into the mold. Because the sphere solidifies more slowly, its microstructure will be coarser than that of the plate even if both...
Abstract
Casting offers the cost advantages over other manufacturing methods for most components. This article reviews the aspects of castings with which designers should be familiar, as well as the methods used by foundries to produce high-integrity castings. It discusses the design concepts that designers and foundries can use to obtain maximum performance from cast parts. The article describes the effects of casting discontinuities on properties, including porosity, inclusions, hot tears, metal penetration, and surface defects. A discussion on hot isostatic pressing treatment of castings is also provided. The article concludes with information on solidification simulation and its use in designing castings.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005252
EISBN: 978-1-62708-187-0
... than molds made from green sand or baked sand, as shown by the following comparison for small steel castings (up to 2.3 kg, or 5 lb, weight) made by three processes: Process Surface finish μm μin. Shell mold 3–6 125–250 Baked sand mold 6–12 250–500 Green sand mold 12.5–25 500...
Abstract
Shell molding is used for making production quantities of castings that range in weight from a few ounces to approximately 180 kg (400 lb), in both ferrous and nonferrous metals. This article lists the limitations or disadvantages of shell mold casting. It describes the two methods for preparation of resin-sand mixture for shell molding, namely, mixing resin and sand according to conventional dry mixing techniques, and coating the sand with resin. Shaping of shell molds and cores from resin sand mixtures is accomplished in machines. The article discusses the major steps in producing a mold or core and describes the problems most frequently encountered in shell-mold casting. The problems include mold cracking, soft molds, low hot tensile strength of molds, peelback, and mold shift. The article concludes with information on examples that provide some relative cost comparisons between shell molding and green sand molding.
Book Chapter
Machining of Tool Steels
Available to PurchaseBook: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002181
EISBN: 978-1-62708-188-7
..., milling, and sawing. The article explains the machining of the following tool steels: water hardening; types A, D and O cold-work; hot work; high speed, low-alloy special-purpose; and low-carbon mold. It details the machining of tool steel gears. The article also discusses the grinding of tool steels...
Abstract
This article describes the selection of tool steels on the basis of specific product applications. It contains tables that list nominal speeds and feeds for the machining of various tool steels. The machining processes include turning, boring, broaching, drilling, reaming, tapping, milling, and sawing. The article explains the machining of the following tool steels: water hardening; types A, D and O cold-work; hot work; high speed, low-alloy special-purpose; and low-carbon mold. It details the machining of tool steel gears. The article also discusses the grinding of tool steels based on steel classification and the effects of steel composition and hardness on grindability. It reviews the types of grinding, namely, surface grinding, cylindrical grinding, centerless grinding, internal grinding, thread grinding, flute grinding, and low-stress grinding. Grinding of types-A, D, F, L, O, P, S and W steels, hot-work steels, and high speed steels, is also detailed.
Image
Plastic mold die made from AISI S7 tool steel that was found to be cracked ...
Available to PurchasePublished: 01 January 2002
Fig. 9 Plastic mold die made from AISI S7 tool steel that was found to be cracked before use. A crack followed the lower recessed contour of the large gear teeth and had an average depth of 1.6 mm ( 1 16 in.). Smaller cracks were also observed on the flat surfaces. (a) Actual size
More
Image
(a) AISI 420 stainless steel mold containing a defect (arrow) observed afte...
Available to PurchasePublished: 01 January 2002
Fig. 28 (a) AISI 420 stainless steel mold containing a defect (arrow) observed after polishing the inside diameter surface. (b) Microscopic examination revealed a large silicate inclusion (unetched).
More
Image
Permanent mold of 4130 steel for centrifugal casting of gray- and ductile-i...
Available to PurchasePublished: 01 January 2002
Fig. 30 Permanent mold of 4130 steel for centrifugal casting of gray- and ductile-iron pipe that failed because of localized overheating. The failure was caused by splashing of molten metal at the spigot end. Subsequent overheating resulted in mold-wall spalling and scoring, details of which
More
Image
This thin-wall steel casting required rapid pouring to fill the mold comple...
Available to PurchasePublished: 01 December 2008
Fig. 46 This thin-wall steel casting required rapid pouring to fill the mold completely. Three cores obstructed the free flow of metal, creating eddies that resulted in defects. Redesign of cores as shown, had it been otherwise acceptable, would have solved the problem of metal flow.
More
Image
A 17-4 PH stainless steel ceramic mold casting, the wall thickness of which...
Available to PurchasePublished: 01 December 2008
Fig. 1 A 17-4 PH stainless steel ceramic mold casting, the wall thickness of which was reduced, from the presumed practicable minimum of 0.150 to 0.080 in., without appreciably affecting the soundness of castings produced
More
Image
This thin-wall steel casting required rapid pouring to fill the mold comple...
Available to PurchasePublished: 01 December 2008
Fig. 9 This thin-wall steel casting required rapid pouring to fill the mold completely. Three ores obstructed the free flow of metal, creating eddies that resulted in defects. Redesign of cores as shown, had it been otherwise acceptable, would have solved the problem of metal flow.
More
1