Skip Nav Destination
Close Modal
Search Results for
mold patterns
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 697
Search Results for mold patterns
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005241
EISBN: 978-1-62708-187-0
.... Both expendable and permanent molds must be separable into two or more parts in order to permit withdrawal of either the permanent pattern (from an expendable mold) or the raw casting (in the case of a permanent mold or die). In the case of sand (or other loose granular material) molding, permanent...
Abstract
Casting can be done with either expendable molds for one-time use or permanent molds for reuse many times. This article lists the various methods used to fabricate expendable molds from permanent patterns. The methods include molding of sand with clay, inorganic binders, or organic resins; shell molding of sand with a thin resin-bonded shell; no-bond vacuum molding of sand; plaster-mold casting; ceramic-mold casting; rammed graphite molding; and magnetic (no-bond) molding of ferrous shot. The article tabulates a general comparison of casting methods and discusses the basic requirements of foundry molds.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005253
EISBN: 978-1-62708-187-0
... Abstract Depending on the size and application, castings manufactured with the expendable mold process and with expendable patterns increase the tolerance from 1.5 to 3.5 times that of the permanent pattern methods. This article reviews the two major expendable pattern methods, such as lost...
Abstract
Depending on the size and application, castings manufactured with the expendable mold process and with expendable patterns increase the tolerance from 1.5 to 3.5 times that of the permanent pattern methods. This article reviews the two major expendable pattern methods, such as lost foam and investment casting. It discusses the Replicast casting process that involves patternmaking with polystyrene and a ceramic shell mold. The article contains a table that summarizes the differences in the steps of casting a part between the permanent pattern and expendable pattern methods.
Image
Published: 01 December 2008
Fig. 4 Stages of mold production in the V-process. (a) Mold pattern. (b) Pattern placed in a hollow pattern carrier. (c) A thin sheet of plastic film is heated and vacuum fitted to the pattern. (d) Vacuum is applied to shrink wrap thin plastic film around the pattern. (e) The film-covered
More
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005327
EISBN: 978-1-62708-187-0
... Abstract This article presents a discussion on the melting, pouring, and shakeout practices; composition control; molds, patterns, and casting design; heat treatment; and applications of different classes of nickel-chromium white irons and high-chromium white irons. iron castings heat...
Abstract
This article presents a discussion on the melting, pouring, and shakeout practices; composition control; molds, patterns, and casting design; heat treatment; and applications of different classes of nickel-chromium white irons and high-chromium white irons.
Image
Published: 01 December 2008
Fig. 5 Comparison of simulated mold-filling patterns with x-ray observation at reduced pressure of 8 kPa and reducing pressure rate of 4.2 kPa/s. A and B, lower and upper part of the casting. Graphite mold and Al-7Si-0.4Mg melt. Source: Ref 11
More
Image
Published: 01 December 2008
Book Chapter
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0009018
EISBN: 978-1-62708-187-0
... solutions to molding and coring problems and describes the molding sequence. Draft refers to the amount of taper given to the sides of a pattern to enable it to be withdrawn easily from the mold. The article concludes with a simple example demonstrating the influence of a casting requirement...
Abstract
This article begins with a schematic illustration of basic principles of sand molding. It discusses the general design factors, such as parting lines, location of radii, bosses and undercuts, and rib locations, of sand molding. The article schematically demonstrates alternative design solutions to molding and coring problems and describes the molding sequence. Draft refers to the amount of taper given to the sides of a pattern to enable it to be withdrawn easily from the mold. The article concludes with a simple example demonstrating the influence of a casting requirement on the direction of draft.
Image
Published: 01 December 2008
Fig. 27 Cost of a conduit elbow produced in various quantities in shell molds and in green sand molds. Pattern and core equipment costs not included
More
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005308
EISBN: 978-1-62708-187-0
... processes such as die casting and permanent mold casting. The article reviews the pattern features and mold production considerations used in the pattern design, namely, parting line considerations, addition of gates and risers, core prints, and locating points. It examines the pattern allowances...
Abstract
This article discusses the types of patterns used for a specific application such as loose patterns, match plate patterns, cope and drag patterns, and special patterns. It describes the principles of the patternmaking techniques used to make expendable molds and for metal casting processes such as die casting and permanent mold casting. The article reviews the pattern features and mold production considerations used in the pattern design, namely, parting line considerations, addition of gates and risers, core prints, and locating points. It examines the pattern allowances for ensuring a dimensionally correct final pattern. A variety of materials and advanced composite materials used in the manufacture of patterns are discussed. The article evaluates the factors influencing the selection of type of patterns for specific castings.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005252
EISBN: 978-1-62708-187-0
... molding and green sand molding. casting dimensional accuracy green sand molding shell molding tensile strength mold cracking soft molds peelback mold shift shell coremaking sand reclamation resin-sand properties mold defects mold patterns THE SHELL PROCESS was first developed...
Abstract
Shell molding is used for making production quantities of castings that range in weight from a few ounces to approximately 180 kg (400 lb), in both ferrous and nonferrous metals. This article lists the limitations or disadvantages of shell mold casting. It describes the two methods for preparation of resin-sand mixture for shell molding, namely, mixing resin and sand according to conventional dry mixing techniques, and coating the sand with resin. Shaping of shell molds and cores from resin sand mixtures is accomplished in machines. The article discusses the major steps in producing a mold or core and describes the problems most frequently encountered in shell-mold casting. The problems include mold cracking, soft molds, low hot tensile strength of molds, peelback, and mold shift. The article concludes with information on examples that provide some relative cost comparisons between shell molding and green sand molding.
Book Chapter
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005251
EISBN: 978-1-62708-187-0
... silicate-carbon dioxide systems, and phosphate-bonded molds. Organically bonded systems include no-bake binders, heat-cured binders, and cold box binders. However, some molding processes do not use binders. Instead, the sand or mold aggregates are held together during pouring by the pattern itself...
Abstract
This article describes the process and advantages of no-bond methods of vacuum molding and magnetic molding, with schematic illustrations. It also discusses the characteristics of plastic film and dimensional specifications of vacuum molding.
Image
Published: 01 December 2008
Fig. 1 Schematic of a sand mold. The pattern is used to form the mold cavity, the core print for locating the core, the gate, the runner, the riser, and the sprue. A separate core box is used to make the sand core that is inserted into the parted mold before pouring.
More
Image
Published: 01 December 2008
Image
Published: 01 December 2008
Fig. 1 Major components of a sand mold. (a) Pattern assembly for cope and drag sections of a mold. (b) Cross section of sand mold assembly with core
More
Image
Published: 01 December 2008
Fig. 8 Steps in making a shell mold by the dump-box technique. (a) The pattern is rotated and clamped to the dump box. (b and c) The box is then rotated 180° to make the investment. (d) Pattern and shell are removed from the box. Voids (c) and resulting peelback (d) are disadvantages
More
Image
Published: 01 December 2008
Fig. 9 Production of a shell mold by the dump-box method in which pattern and dump box are rotated at high speed on a circular track. (a) Rotation. (b) Rollover. (c) Reverse rotation
More
Image
Published: 01 December 2008
Fig. 2 Major components of a sand mold (a) pattern assembly for cope and drag sections. (b) Cross section of mold with core
More
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005254
EISBN: 978-1-62708-187-0
... was not removed before pouring of the metal (patent 2,830,343). The polystyrene foam pattern left in the sand mold is decomposed by the molten metal. The metal replaces the foam pattern, exactly duplicating all of the features of the pattern. Early use of the process was limited to one-of-a-kind rough castings...
Abstract
This article discusses the sequence of operations for producing a foam pattern for casting. It provides information on expandable polystyrene, the most preferred material for manufacturing lost foam patterns. The article then describes the major functions of pattern molding and assembly. The types and application methods of various lost foam coatings are explained. The article also describes the investment of the foam pattern in a sand system. It concludes with a discussion on the advantages of lost foam casting and information on the formation and control of folds.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003176
EISBN: 978-1-62708-199-3
... the customer and processes the solid model into sections. Based on these sections, the RP machine can then build up a pattern or a mold or core box by either fusing a pattern or mold material following directions from the computer or by cutting material that is glued together by a suitable adhesive to form...
Abstract
This article provides general guidelines for casting design to provide progressive solidification, minimize heat concentration, eliminate cores, and prevent distortion. Casting design also affects tolerances. Casting tolerances depend on the alloy being poured, the size of the casting, and the molding method used. Designers can predict the effect of the design on the structure of the final part using solidification simulation models, namely finite element and finite difference models, and rapid prototyping. The article concludes with a short note on how the quality is assured in the foundry.
Image
Published: 30 September 2015
Fig. 6 Section of an as-molded part showing internal rifling patterns. Courtesy Materials Processing, Inc.
More
1