Skip Nav Destination
Close Modal
By
Doru M. Stefanescu
By
Itsuo Ohnaka
Search Results for
mold coatings
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 820
Search Results for mold coatings
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Effect of (a) mold coating thickness and (b) molten metal temperature on so...
Available to PurchasePublished: 01 December 2008
Fig. 5 Effect of (a) mold coating thickness and (b) molten metal temperature on solidification in horizontal centrifugal casting. Numbers 1 and 2 indicate liquidus and solidus curves, respectively.
More
Image
Fabricated part—aliphatic polyurea in-mold-coated structural aromatic with ...
Available to PurchasePublished: 30 September 2015
Fig. 30 Fabricated part—aliphatic polyurea in-mold-coated structural aromatic with chopped glass reinforcement
More
Image
Schematic diagram of the in-mold coating process. See text for description....
Available to PurchasePublished: 01 January 2001
Image
Effect of section thickness, carbon equivalent (CE), and mold coating on th...
Available to PurchasePublished: 31 August 2017
Fig. 9 Effect of section thickness, carbon equivalent (CE), and mold coating on the thickness of the casting skin of CG iron with 15–20% nodularity. NC, no coating; FeSi, ferro-silicon coating; Gr, graphite coating. (a) Hypoeutectic iron, CE = 4.08. (b) Eutectic iron, CE = 4.33. Source: Ref 4
More
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005260
EISBN: 978-1-62708-187-0
... the application of mold coatings and examines the effects of major processing variables on mold life. The variables that determine mold temperature and measures for controlling it are reviewed, and the effects of short-term and long-term variables on the dimensional accuracy of permanent mold castings...
Abstract
This article provides information on metals that can be cast in permanent molds. It describes the advantages, disadvantages, applications, and design of permanent castings. Following a discussion on the factors considered in mold design and material selection, the article details the application of mold coatings and examines the effects of major processing variables on mold life. The variables that determine mold temperature and measures for controlling it are reviewed, and the effects of short-term and long-term variables on the dimensional accuracy of permanent mold castings are explained. The article concludes with a discussion on the factors influencing the surface finish on permanent mold castings.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006513
EISBN: 978-1-62708-207-5
... reviews the basic components of mold coatings: refractory fillers, binder, and carrier. Casting defects and suggested corrective actions for permanent mold casting are summarized in a table. The article concludes with a discussion on thin-wall permanent-mold castings. cast aluminum alloys casting...
Abstract
Aluminum casting in steel and iron permanent molds is used widely throughout industry, and the vast majority of permanent mold castings are made of aluminum and its alloys. There are several methods used to cast aluminum in permanent molds. This article focuses on permanent mold casting with molten aluminum fed by gravity, low pressure, vacuum and centrifugal pressure, and squeeze casting. It discusses the major variables that affect the life of permanent molds, including pouring temperature, casting shape, cooling methods, heating cycles, storage, and cleaning. The article reviews the basic components of mold coatings: refractory fillers, binder, and carrier. Casting defects and suggested corrective actions for permanent mold casting are summarized in a table. The article concludes with a discussion on thin-wall permanent-mold castings.
Book Chapter
Surface Quality and Mold-Metal Interface Interaction
Available to PurchaseSeries: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006313
EISBN: 978-1-62708-179-5
... metal penetration in sand molds and concludes with information on the effect of sand additives and mold coatings. compact graphite iron metal penetration molding mold-metal interface interaction roughness sand molds spheroidal graphite surface quality ECONOMIC CONSIDERATIONS require...
Abstract
The appearance, morphology, and extent of the casting skin are the consequence of mold-metal interface interaction. This article discusses the classification of the mold-metal interaction based on severity: mild mold-metal interaction and severe mold-metal interaction. The casting surface exhibits some roughness, which depends on the molding materials used in the casting process. The article describes the effects of the casting skin in spheroidal graphite (SG) and compact graphite (CG) irons, as well as the mechanism of casting skin formation. It discusses the physics of liquid metal penetration in sand molds and concludes with information on the effect of sand additives and mold coatings.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006316
EISBN: 978-1-62708-179-5
.../pouring procedure, mold properties (mold temperature, thermophysical properties of mold and mold coating), and casting design. casting design chilling tendency cooling rate holding time inoculation macrostructure microstructure molten iron pouring solidification thin-wall gray iron...
Abstract
Thin-wall gray cast iron (TWGCI) can be seen as a potential material for the preparation of lightweight castings in automotive engineering applications. This article discusses the most important challenges for TWGCI: cooling rate, solidification, macrostructure, microstructure, and chilling tendency. It reviews the tensile properties and thermophysical properties of gray cast iron. The article describes the variables that influence molten iron preparation: charge materials, melting furnace thermal regime, chemical composition, modification and inoculation treatment, holding time/pouring procedure, mold properties (mold temperature, thermophysical properties of mold and mold coating), and casting design.
Image
Car spoilers manufactured by SMC compression molding and with the use of in...
Available to PurchasePublished: 01 January 2001
Fig. 38 Car spoilers manufactured by SMC compression molding and with the use of in-mold coating as primer for subsequent painting
More
Image
This casting was easy to produce in a permanent mold to the dimensions indi...
Available to PurchasePublished: 01 December 2008
Book Chapter
Compression Molding and Stamping
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003019
EISBN: 978-1-62708-200-6
... waviness and improves appearance. A technique for obtaining better surface finish that is currently being used in many automotive applications is called in-mold coating. To apply an in-mold coating, a thermoset resin is injected into the mold after the SMC component is partially cured. To provide...
Abstract
The compression molding process is most commonly called the sheet molding compound (SMC) process in reference to the precursor sheet molding compound material it uses. This article discusses the types of materials used for sheet manufacture, and describes the manufacturing and processing parameters of SMC components, providing details on tooling and process advantages and limitations. The article provides a general overview of the types of compression molding processes, including structural compression molding and thermoplastic compression molding.
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005745
EISBN: 978-1-62708-171-9
..., structural steel coatings, transfer chutes, bake ware, and vacuum systems. Here, the intrinsic properties of polymers—such as high chemical resistance, high impact resistance, and high abrasion resistance—are used to advantage. Metals Processing Industries Mold Coatings Mold coatings for foundries...
Abstract
This article reviews the use of thermal spray polymer coatings as a replacement for paints. It discusses the applications of the thermal spray forming process. The article also provides information on the applications of thermal spray in metal processing, textile and plastics, and ceramic and glass manufacturing industries.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005261
EISBN: 978-1-62708-187-0
... mold by either lowering the machine platen to the furnace or by raising the furnace to meet the platen. In former times, the fill/stalk tubes were typically constructed of steel or cast iron to which a protective refractory coating was applied to prevent deterioration in the molten metal. High-strength...
Abstract
This article provides an overview of conventional low-pressure casting and describes types of furnaces, tooling, and cores. It discusses the casting cycle steps, advantages, mechanical properties, and considerations of counterpressure casting. The article describes the vacuum riserless/pressure riserless casting process for casting aluminum.
Book Chapter
Design Problems Involving Uniform Sections
Available to PurchaseBook: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0009022
EISBN: 978-1-62708-187-0
... at the parting line were still heavier, because of their being used for the attachment of gates and risers. These ribs were insulated with extra mold coating, because smoothness of the as-cast surface was not mandatory. By water-cooling the inner steel core to obtain some chilling of the metal, the casting...
Abstract
In many castings, functional requirements dictate that walls be uniform or nearly uniform in thickness. Many problems in producing castings having walls of uniform thickness are associated with the premature freezing of molten metal before all parts of the mold cavity have been filled. This article discusses the design problems and solutions of various castings, such as sand, shell mold, permanent mold, and investment castings, with illustrations.
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006014
EISBN: 978-1-62708-172-6
... surfaces. NAPF 500-03-02 “Hand Tool Cleaning” Shall result in the surface being free of all loose annealing oxide, loose rust, loose mold coating, and other loose detrimental foreign matter. It is not intended that adherent annealing oxide, mold coating, and rust be removed by this process. Annealing...
Abstract
This article reviews the various substrates for coatings, namely, steel, cast iron, galvanized steel, aluminum, stainless steel, nonferrous metals, concrete, and wood. General guidance for surface preparation and coating selection is provided along with unique requirements for the particular substrate(s).
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003172
EISBN: 978-1-62708-199-3
... in larger castings. Sand grain size is usually coarser in dry sand molding, to allow the increased permeability of the mold to aid in mold drying. Therefore, mold washes and coatings are often applied to improve surface finish. As an alternative to drying the entire mold, only the surface of the casting...
Abstract
This article discusses classification of foundry processes based on the molding medium, such as sand molds, ceramic molds, and metallic molds. Sand molds can be briefly classified into two types: bonded sand molds, and unbonded sand molds. Bonded sand molds include green sand molds, dry sand molds, resin-bonded sand molds, and sodium silicate bonded sand. The article describes the casting processes that use these molds, including the no-bake process, cold box process, hot box process, the CO2 process, lost foam casting process and vacuum molding process. The casting processes that use ceramic molds include investment casting, and plaster casting. Metallic molds are used in permanent mold casting, die casting, semisolid casting, and centrifugal casting.
Book Chapter
Practical Issues in Computer Simulation of Casting Processes
Available to PurchaseBook: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005239
EISBN: 978-1-62708-187-0
... (CAD) data, because of mold coating, production error, and other factors such as springback in sand molding. Measuring important places of the mold, in particular, thin sections, is recommended. Computing cost can be greatly reduced if some approximation is possible, as demonstrated in Fig. 2...
Abstract
This article illustrates the simulation procedure of casting process. It describes important elements and points of the simulations. These include the setting of clear simulation objectives, selection of proper simulation code, hints in modeling of shape and phenomena, initial and boundary conditions, physical properties, enmeshing, and evaluation of simulation results. The article also provides some insights into the application of models to real world problem for foundry process engineers.
Book Chapter
No-Bond Sand Molding
Available to PurchaseBook: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005251
EISBN: 978-1-62708-187-0
... development as the lost-foam method. The magnetic molding process ( Fig. 1 , Ref 3 ) involves a coated EPS pattern that is surrounded by a mold material of magnetic iron or steel shot (instead of sand as in lost foam). After the EPS pattern is positioned in the flask and encased with magnetic shot...
Abstract
This article describes the process and advantages of no-bond methods of vacuum molding and magnetic molding, with schematic illustrations. It also discusses the characteristics of plastic film and dimensional specifications of vacuum molding.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005257
EISBN: 978-1-62708-187-0
..., inoculation, fluxing, and extraction of castings. It reviews mold heating and coating techniques as well as the various molds used. The three most common defects observed in centrifugal castings are also discussed. The article concludes with information on the applications of centrifugal casting in investment...
Abstract
This article describes the applications, advantages, and disadvantages of three centrifugal casting processes as well as the equipment used. These processes are true centrifugal casting, semicentrifugal casting, and centrifuge mold casting. The article discusses the cooling, inoculation, fluxing, and extraction of castings. It reviews mold heating and coating techniques as well as the various molds used. The three most common defects observed in centrifugal castings are also discussed. The article concludes with information on the applications of centrifugal casting in investment casting and combustion synthesis as well as spin casting.
Book Chapter
Design Problems Involving Thin Sections
Available to PurchaseBook: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0009021
EISBN: 978-1-62708-187-0
... of materials, with different characteristics. These mold coatings influence the directional solidification of the casting. Expendable Cores One advantage of the permanent mold casting process is that sand or plaster cores can be used instead of metal cores. This helps to overcome many design limitations...
Abstract
Thin sections save weight and thus contribute to a more favorable strength-to-weight ratio. By requiring a smaller volume of metal, thin walls may also lower casting costs, particularly when an expensive alloy is being poured. This article discusses the design problems in thin-wall steel sand castings, thin-wall aluminum and magnesium castings, thin-wall permanent mold castings, and thin-wall investment castings, with schematic illustrations.
1