Skip Nav Destination
Close Modal
Search Results for
molar volume
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 138 Search Results for
molar volume
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003588
EISBN: 978-1-62708-182-5
... Abstract Metals can react chemically with oxygen when exposed to air. Essential to an understanding of the gaseous corrosion of a metal are the crystal structure and the molar volume of the metal on which the oxide builds, both of which may affect growth stresses in the oxide. This article...
Abstract
Metals can react chemically with oxygen when exposed to air. Essential to an understanding of the gaseous corrosion of a metal are the crystal structure and the molar volume of the metal on which the oxide builds, both of which may affect growth stresses in the oxide. This article presents crystal structures and thermal properties of pure metals and oxides in a tabular form. The free energy of reaction, which describes the oxidation process of a pure divalent metal, is presented. The article illustrates the Richardson-Jeffes diagram, which is used in the determination of the standard Gibbs energy change of formation of oxides and the corresponding dissociation pressures of the oxides as a function of temperature. It demonstrates the Kellogg diagram which shows stability range in more complicated multioxidant systems. The article explains the determination of partial pressures of gas mixtures and partial pressures of volatile oxidation products.
Book Chapter
Book: Alloy Phase Diagrams
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006223
EISBN: 978-1-62708-163-4
...) ε iron becomes stable. The reason for these changes can be explained by Eq 12 . At constant temperature, the free energy of a phase increases with pressure such that: (Eq 14) ( ∂ G ∂ T ) T = V If the two phases in equilibrium have different molar volumes...
Abstract
Thermodynamic descriptions have become available for a large number of alloy systems and allow the calculation of the phase diagrams of multicomponent alloys. This article begins with a discussion on three laws of thermodynamics: the Law of Conservation of Energy, the Second Law of Thermodynamics, and the Third Law of Thermodynamics. It informs that for transformations that occur at a constant temperature and pressure, the relative stability of the system is determined by its Gibbs free energy. The article describes the Gibbs free energy of a single-component unary system and the Gibbs free energy of a binary solution. It schematically illustrates the structure of a binary solid solution with interatomic bonds and shows how the equilibrium state of an alloy can be obtained from the free-energy curves at a given temperature. The article concludes with information on the construction of eutectic and binary phase diagrams from Gibbs free-energy curves.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005430
EISBN: 978-1-62708-196-2
... = entropy of vacancy migration (J/K) t = time (s) T = temperature (K) V m = molar volume of a phase (m 3 /mol) x i = mole fraction of component i y i α , y i β = site fractions of component i on the α and β sublattices, respectively Y i...
Abstract
Diffusion is the process by which molecules, atoms, ions, point defects, or other particle types migrate from a region of higher concentration to one of lower concentration. This article focuses on the diffusivity data and modeling of lattice diffusion in solid-state materials, presenting their diffusion equations. It discusses different methods for evaluating the diffusivity of a material, including the measurement of diffusion coefficients, composition profiles, and layer growth widths. The article reviews the various types of direct and indirect diffusion experiments to extract tracer, intrinsic, and chemical diffusivities. It provides information on the applications of single-phase and multiphase diffusion.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005207
EISBN: 978-1-62708-187-0
... without an abrupt change in the physical properties, such as molar volume or heat capacity. Therefore, metastable states can exhibit a true reversible equilibrium. The thermodynamic description of solidification can be quantified by recalling that for a pure metal at the equilibrium temperature, T f...
Abstract
This article discusses selected highlights of thermodynamic relationships during solidification and nucleation kinetics behavior in connection with the basis of nucleation treatments, such as grain refinement and inoculation, to provide a summary of nucleation phenomena during casting. The article describes nucleation phenomenon such as homogeneous nucleation and heterogeneous nucleation. It examines various grain refinement models, such as the carbide-boride model, the free growth model, and the constitutional undercooling model. The article concludes with information on the thermal analysis techniques for assessing grain-refining characteristics during master alloy processing.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005409
EISBN: 978-1-62708-196-2
... temperature t time V M molar volume W boundary-groove interface shape, W ( x , t ) w diameter of alpha platelet X fraction transformed X s fraction spheroidized x , y , z Cartesian coordinates α alpha phase β beta phase Γ shear strain Γ...
Abstract
This article focuses on the modeling of microstructure evolution during thermomechanical processing in the two-phase field for alpha/beta and beta titanium alloys. It also discusses the mechanisms of spheroidization, the coarsening, particle growth, and phase decomposition in titanium alloys, with their corresponding equations.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005511
EISBN: 978-1-62708-197-9
... l is the length, V i is the instantaneous volume, and V A is the volume of austenite at a specified temperature. The instantaneous volume, V i , is calculated from the phase fraction and molar volume of each phase involved in the phase transformation: (Eq 3) V i = ∑ φ f V...
Abstract
This article focuses on the industrial applications of phase diagrams. It presents examples to illustrate how a multicomponent phase diagram calculation can be readily useful for industrial applications. The article demonstrates how the integration of a phase diagram calculation with kinetic and microstructural evolution models greatly enhances the power of the CALPHAD approach in materials design and processing development. It also discusses the limitations of the CALPHAD approach.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005189
EISBN: 978-1-62708-187-0
... R Universal gas constant S Ratio of surface area to volume S c Ratio carbon concentration: iron alloy melt to eutectic S r Rectified saturation degree, that is, weight fraction Fe-C eutectic formed on solidification of hypoeutectic iron Δ S ¯ i Partial molar...
Abstract
This article introduces the fundamental concepts of chemical thermodynamics and chemical kinetics in describing presolidification phenomena. For metallurgical systems, the most important thermodynamic variables are enthalpy and Gibbs free energy. A qualitative demonstration of the interrelationship between phase diagrams and thermodynamics is presented. The article discusses processes that generally limit the rates of chemical processes. These include nucleation of the product phase and interphase mass transport. The article provides a discussion on the dissolution of alloy with melting point lower than bath temperature and dissolution of alloy that is solid at bath temperatures.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003066
EISBN: 978-1-62708-200-6
... in predictable ways. For example, for selenides of the type Ge-As-Se, the glass transformation temperature, hardness, Young's modulus, and strength increase, while the thermal expansion coefficient and molar volume decrease with a tighter structure. The properties of these glasses also depend on the type...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006926
EISBN: 978-1-62708-395-9
... ) 2 where a is a constant, V 1 is the molar volume of the solvent, R is the gas constant, T is the absolute temperature, and δ p and δ s are the solubility parameters (that is, square roots of the cohesive energy densities) of the plastic and solvent, respectively. Equation 7...
Abstract
The susceptibility of plastics to environmental failure, when exposed to organic chemicals, can limit their use in many applications. A combination of chemical and physical factors, along with stress, usually leads to a serious deterioration in properties, even if stress or the chemical environment alone may not appreciably weaken a material. This phenomenon is referred to as environmental stress cracking (ESC). The ESC failure mechanism for a particular plastics-chemical environment combination can be quite complex and, in many cases, is not yet fully understood. This article focuses on two environmental factors that contribute to failure of plastics, namely chemical and physical effects.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005415
EISBN: 978-1-62708-196-2
... and nonconserved order parameters. Typical examples of the conserved order parameters include concentration of a chemical species, density, and molar volume in a multicomponent and multiphase system. Examples of the nonconserved order parameters include long-range order parameters for atomic ordering, inelastic...
Abstract
This article discusses the fundamental aspects of phase-field microstructure modeling. It describes the evolution of microstructure modeling, including nucleation, growth, and coarsening. The article reviews two approaches used in the modeling nucleation of microstructure: the Langevin force approach and explicit nucleation algorithm. Calculation of activation energy and critical nucleus configuration is discussed. The article presents the deterministic phase-field kinetic equations for modeling growth and coarsening of microstructure. It also describes the material-specific model inputs, chemical free energy and kinetic coefficients, for phase-field microstructure modeling. The article provides four examples that illustrate some aspects of phase-field modeling.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003716
EISBN: 978-1-62708-182-5
... Essential to an understanding of gaseous corrosion are the crystal structure and the density (molar volume) of the oxide and of the metal on which the oxide builds. Both may affect growth stresses in the oxide. For high-temperature service, the melting points of the oxide and metal, their structure...
Book Chapter
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003719
EISBN: 978-1-62708-182-5
...ASM Handbook, Volume 13A: Corrosion: Fundamentals, Testing, and Protection Copyright © 2003 ASM International ® S.D. Cramer, B.S. Covino, Jr., editors, p1032-1033 All rights reserved. DOI: 10.31399/asm.hb.v13a.a0003719 www.asminternational.org Abbreviations and Symbols a crack length; chemical...
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001731
EISBN: 978-1-62708-178-8
... Absorption Spectrometry” in this Volume). The spectral region of interest extends from 200 to 800 nm. The short-wavelength (200 nm) high-energy end of this spectral region is defined by the fact that below 200 nm oxygen and nitrogen in the atmosphere begin to absorb the radiant energy. The region below...
Abstract
Ultraviolet/visible (UV/VIS) absorption spectroscopy is a powerful yet cost-effective tool that is widely used to identify organic compounds and to measure the concentration of principal and trace constituents in liquid, gas, and solid test samples. This article emphasizes the quantitative analysis of elements in metals and metal-bearing ores. The instrumentation required for such applications consists of a light source, a filter or wavelength selector, and some type of visual or automated sensing mechanism. The article examines common sensing options and provides helpful information on how to set up and run a variety of UV/VIS absorption tests.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003589
EISBN: 978-1-62708-182-5
... the Pilling-Bedworth molar volume ratio is: (Eq 2) Volume of 1 mol of Al 2 O 3 Volume of 2 mol of Al = 1.287 where the volumes are calculated from molecular and atomic weights and the densities of the phases. If the ratio is less than 1, the oxide scales are usually...
Abstract
This article describes the Schottky defect and the Frenkel defect in oxides. It provides information on the p-type metal-deficit oxides and n-type semiconductor oxides. The article discusses diffusion mechanisms and laws of diffusion proposed by Fick. It explains the oxide texture of amorphous and epitaxy oxide layers and presents equations for various oxidation reaction rates. The article reviews different theories to describe the oxidation mechanism. These include the Cabrera-Mott, Hauffe-IIschner, Grimley-Trapnell, Uhlig, and Wagner theories.
Book Chapter
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 June 2024
DOI: 10.31399/asm.hb.v12.a0007040
EISBN: 978-1-62708-387-4
... Abstract This article presents abbreviations and symbols related to fractography. fractography ASM Handbook, Volume 12, Fractography C.J. Schroeder, R.J. Parrington, J.O. Maciejewski, J.F. Lane, editors httpsdoi.org/10.31399/asm.hb.v12.a0007040 Copyright # 2024 ASM InternationalW All...
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005517
EISBN: 978-1-62708-197-9
... ). In Fig. 6 , the experimental results, given in volume fraction, have been compared with mole percent predictions, which is reasonable because molar volumes of the two phases are very similar. The d ¯ for the amount of austenite is less than 4%, of the same order as would be expected...
Abstract
This article presents the background to the CALculation of PHAse Diagrams (CALPHAD) method, explaining how it works, and how it can be applied in industrial practice. The extension of CALPHAD methods as a core basis for the modeling of generalized material properties is explored. It informs that one of the aims of CALPHAD methods has been to calculate phase equilibria in the complex, multicomponent alloys that are used regularly by industry. The article discusses the application of CALPHAD calculations to industrial alloys. Modeling of general material properties, such as thermophysical and physical properties, temperature- and strain-rate-dependent mechanical properties, properties for use in the modeling of quench distortion, and properties for use in solidification modeling, is also reviewed. The article also describes the linking of thermodynamic, kinetic, and material property models.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003590
EISBN: 978-1-62708-182-5
... and electronic defects is a dominating mode of mass transport. X X X Interdiffusion in a binary alloy (Darken model) Oxidized alloy is an ideal solid solution, i.e., y i = a i X X X An alloy molar volume does not depend on composition. X X X Mass transport in an alloy is controlled...
Abstract
This article examines the characteristics and behavior of scale produced by various types of oxidation. The basic models, concepts, processes, and open questions for high-temperature gaseous corrosion are presented. The article describes the development of geometrically induced growth stresses, transformation stresses, and thermal stresses in oxide scales. It discusses the ways in which stresses can be relieved. The article provides information on catastrophic oxidation, internal oxidation, sulfidation, alloy oxidation, selective oxidation, and concurrent oxidation. It illustrates the relationships between scale morphologies on binary alloys and concludes with a discussion on metal dusting and chlorine corrosion.
Book Chapter
Book: Fractography
Series: ASM Handbook Archive
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0005697
EISBN: 978-1-62708-181-8
...-intensity factor keV kiloelectron volt kg kilogram km kilometer kPa kilopascal ksi kips (100-lb) per square inch kV kilovolt L length L liter lb pound LME liquid-metal embrittlement In natural logarithm (base e) m meter M molar solution; magnification Me camera magnification M. enlarging magnification Mr...
Series: ASM Handbook Archive
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.9781627081818
EISBN: 978-1-62708-181-8
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003579
EISBN: 978-1-62708-182-5
... in the article “Potential versus pH (Pourbaix) Diagrams” in this Section of the Volume. Thermodynamics of Chemical Equilibria The object of chemical thermodynamics is to develop a mathematical treatment of the chemical equilibria and the driving forces behind chemical reactions. The desire is to catalog...
Abstract
The electrode potential is one of the most important parameters in the thermodynamics and kinetics of corrosion. This article discusses the fundamentals of electrode potentials and illustrates the thermodynamics of chemical equilibria by using the hydrogen potential scale and the Nernst equation. It describes galvanic cell reactions and corrosion reactions in an aqueous solution in an electrochemical cell. The article explores the most common cathodic reactions encountered in metallic corrosion in aqueous systems. The reactions included are proton reduction, water reduction, reduction of dissolved oxygen, metal ion reduction, and metal deposition. The article also presents the standard equilibrium potentials measured at 25 deg C relative to a standard hydrogen electrode for various metal-ion electrodes in a tabular form.
1