Skip Nav Destination
Close Modal
By
Charles R. Manning, Jr., Thomas C. Wenzel
By
Doru M. Stefanescu, Roxana Ruxanda
By
Carlos N. Tomé, Armand J. Beaudoin
By
J.W. Yoon, F. Barlat
By
Michael Reich, Olaf Kessler
By
Rongpei Shi, Yunzhi Wang, Dong Wang
By
C. Simsir
By
Matthew John M. Krane, Vaughan R. Voller, Ben Q. Li
By
Ch.-A. Gandin, I. Steinbach
By
D.R. Poirier, J.C. Heinrich
By
Brian G. Thomas, Michel Bellet
By
A. De
By
Ole Runar Myhr, Øystein Grong
By
John Goldak, Mahyar Asadi, Lennart Karlsson
By
Sudarsanam Suresh Babu
By
S.S. Glickstein, E. Friedman, R.P. Martukanitz
By
Wei Zhang, Rohit Rai, Amit Kumar, Igor V. Krivtsun
By
C. Schwenk
Search Results for
modeling
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 3328
Search Results for modeling
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003526
EISBN: 978-1-62708-180-1
... technique that allows numerical solutions to be obtained for complex mathematical and engineering problems. It is a technique that relies on creating a geometric mathematical model of the structure out of discrete or finite numbers of individual nodes and elements. Displacement functions are assumed...
Abstract
This article provides information on the development of finite element analysis (FEA) and describes the general-purpose applications of FEA software programs in structural and thermal, static and transient, and linear and nonlinear analyses. It discusses special-purpose finite element applications in piping and pressure vessel analysis, impact analysis, and microelectronics. The article describes the steps involved in the design process using the FEA. It concludes with two case histories that involve the use of FEA in failure analysis.
Book Chapter
Modeling and Accident Reconstruction
Available to PurchaseSeries: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003523
EISBN: 978-1-62708-180-1
... with the principles for failure analysis of material incidents that are less complex than a large-scale accident. The article provides a brief review of some general concepts on the use of modeling which can be a very powerful tool for information pertaining to the reconstruction of an accident where the model can...
Abstract
This article focuses on the general methods and approaches from the perspective of a reconstruction analyst and includes discussions relevant to materials failure analysts at the incident scene. The elements of accident reconstruction are described. These have conceptual similarity with the principles for failure analysis of material incidents that are less complex than a large-scale accident. The article provides a brief review of some general concepts on the use of modeling which can be a very powerful tool for information pertaining to the reconstruction of an accident where the model can be a physical, mathematical, or logical representation of a physical system or process.
Book Chapter
Computer Modeling of Solidification Microstructures
Available to PurchaseSeries: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003729
EISBN: 978-1-62708-177-1
... Abstract Computational modeling assists in addressing the issues of solid/liquid interface dynamics at the microlevel. It also helps to visualize the grain length scale, fraction of phases, or even microstructure transitions through microstructure maps. This article provides a detailed account...
Abstract
Computational modeling assists in addressing the issues of solid/liquid interface dynamics at the microlevel. It also helps to visualize the grain length scale, fraction of phases, or even microstructure transitions through microstructure maps. This article provides a detailed account of the general capabilities of the various models that can generate microstructure maps and thus transform the computer into a dynamic microscope. These include standard transport models, phase-field models, Monte Carlo models, and cellular automaton models.
Book Chapter
Process Modeling
Available to PurchaseBook: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005726
EISBN: 978-1-62708-171-9
... Abstract A major effort in the development of thermal spray applications has been the improvement of process reliability and predictability in response to process changes. The ability to model a process is a prerequisite to understanding and controlling it. This article provides an overview...
Abstract
A major effort in the development of thermal spray applications has been the improvement of process reliability and predictability in response to process changes. The ability to model a process is a prerequisite to understanding and controlling it. This article provides an overview of thermal spray process modeling, as it applies to the engineering of new thermal spray equipment and coating development.
Book Chapter
Polycrystal Modeling, Plastic Forming, and Deformation Textures
Available to PurchaseSeries: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004028
EISBN: 978-1-62708-185-6
... in technological applications. The article defines the basic kinematic tensors, reports their relations, and presents expressions for calculating the change in crystallographic orientation associated with plastic deformation. It surveys some of the polycrystal models in terms of the relative strength...
Abstract
This article outlines several polycrystal formulations commonly applied for the simulation of plastic deformation and the prediction of deformation texture. It discusses the crystals of cubic and hexagonal symmetry that constitute the majority of the metallic aggregates used in technological applications. The article defines the basic kinematic tensors, reports their relations, and presents expressions for calculating the change in crystallographic orientation associated with plastic deformation. It surveys some of the polycrystal models in terms of the relative strength of the homogeneous effective medium (HEM). The article analyzes the anisotropy predictions of rolled face-centered-cubic and body centered-cubic sheets and presents simulations of the axial deformation of hexagonal-close-packed zirconium. The applications of polycrystal constitutive models to the simulation of complex forming operations, through the use of the finite element method, are also presented.
Book Chapter
Modeling and Simulation of the Forming of Aluminum Sheet Alloys
Available to PurchaseSeries: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005168
EISBN: 978-1-62708-186-3
... elastic-plastic stress integration finite element methods forming macroscopic aspects microscopic aspects numerical simulation plastic behavior sheet metal forming simulation springback tensile instability WITH ADVANCES in computer hardware and software, it is possible to model material...
Abstract
This article discusses the numerical simulation of the forming of aluminum alloy sheet metals. The macroscopic and microscopic aspects of the plastic behavior of aluminum alloys are reviewed. The article presents constitutive equations suitable for the description of aluminum alloy sheets. It explains testing procedures and analysis methods that are used to measure the relevant data needed to identify the material coefficients. The article describes the various formulations of finite element methods used in sheet metal forming process simulations. Stress-integration procedures for both continuum and crystal-plasticity mechanics are also discussed. The article also provides various examples that illustrate the simulation of aluminum sheet forming.
Book Chapter
Modeling and Simulation of the Heat Treatment of Aluminum Alloys
Available to PurchaseSeries: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006271
EISBN: 978-1-62708-169-6
... Abstract Heat treatment simulation helps to predict heat treatment results such as component microstructures, properties, residual stresses, and distortion, and thereby assists in reducing experimental effort in defining heat treatment parameters. This article discusses the modeling...
Abstract
Heat treatment simulation helps to predict heat treatment results such as component microstructures, properties, residual stresses, and distortion, and thereby assists in reducing experimental effort in defining heat treatment parameters. This article discusses the modeling and simulation of age hardening as being the most important heat treatment to strengthen aluminum alloys. It provides information on the heat treatment simulation model, the yield strength model based on the responsible strengthening mechanisms, and the flow curve model based on mechanical tests. The article also discusses simulation of the quenching process, and provides examples for aluminum quenching simulation.
Book Chapter
Modeling and Simulation of Microstructure Evolution during Heat Treatment of Titanium Alloys
Available to PurchaseSeries: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006277
EISBN: 978-1-62708-169-6
... Abstract This article describes the integration of thermodynamic modeling, mobility database, and phase-transformation crystallography into phase-field modeling and its combination with transformation texture modeling to predict phase equilibrium, phase transformation, microstructure evolution...
Abstract
This article describes the integration of thermodynamic modeling, mobility database, and phase-transformation crystallography into phase-field modeling and its combination with transformation texture modeling to predict phase equilibrium, phase transformation, microstructure evolution, and transformation texture development during heat treatment of multicomponent alpha/beta and beta titanium alloys. It includes quantitative description of Burgers orientation relationship and path, discussion of lattice correspondence between the alpha and beta phases, and determination of the total number of Burgers correspondence variants and orientation variants. The article also includes calculation of the transformation strain with contributions from defect structures developed at alpha/beta interfaces as a precipitates grow in size. In the CALculation of PHAse Diagram (CALPHAD) framework, the Gibbs free energies and atomic mobilities are established as functions of temperature, pressure, and composition and serve directly as key inputs of any microstructure modeling. The article presents examples of the integrated computation tool set in simulating microstructural evolution.
Book Chapter
Modeling and Simulation of Steel Heat Treatment—Prediction of Microstructure, Distortion, Residual Stresses, and Cracking
Available to PurchaseSeries: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005950
EISBN: 978-1-62708-166-5
... treatment processes has proved that it can be a powerful tool to reach those objectives. Mathematical models and computer codes for simulation of hardening processes have been developed in academia since the late 1970s, and commercial finite-element analysis (FEA) software has been around for almost two...
Abstract
This article describes the fundamental concepts of heat treatment simulation, including the physical events and their interactions, the heat treatment simulation software, and the commonly used simulation strategies. It summarizes material data needed for heat treatment simulations and discusses reliable data sources as well as experimental and computational methods for material data acquisition. The article provides information on the process data needed for accurate heat treatment simulation and the methods for their determination. Methods for validating heat treatment simulations are also discussed with an emphasis on the underlying philosophy for the selection and design of validation tests. The article also discusses the applications, capabilities, and limitations of heat treatment simulations via selected industrial case studies for a better understanding of the effect of microstructure, distortion, residual stress, and cracking in gears, shafts, and bearing rings.
Book Chapter
Modeling of Transport Phenomena and Electromagnetics
Available to PurchaseBook: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005234
EISBN: 978-1-62708-187-0
... Abstract This article examines the critical features of four key areas of modeling transport phenomena associated with casting processes. These include heat and species transport in a metal alloy, flow of the liquid metal, tracking of the free metal-gas surface, and inducement of metal flow via...
Abstract
This article examines the critical features of four key areas of modeling transport phenomena associated with casting processes. These include heat and species transport in a metal alloy, flow of the liquid metal, tracking of the free metal-gas surface, and inducement of metal flow via electromagnetic fields. Conservation equations that represent important physical phenomena during casting processes are presented. The article provides a discussion on how the physical phenomena can be solved. It provides information on a well-established array of general and specific computational tools that can be readily applied to modeling casting processes. The article also summarizes the key features of the conservation equations in these tools.
Book Chapter
Direct Modeling of Structure Formation
Available to PurchaseBook: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005236
EISBN: 978-1-62708-187-0
... Abstract Modeling of structure formation in casting of alloys involves several length scales, ranging from the atomic level to macroscopic scale. Intermediate length scales are used to define the microstructure of the growing phases and the grain structure. This article discusses the principles...
Abstract
Modeling of structure formation in casting of alloys involves several length scales, ranging from the atomic level to macroscopic scale. Intermediate length scales are used to define the microstructure of the growing phases and the grain structure. This article discusses the principles and applications of the phase field method and the cellular automaton method for modeling the direct evolution of structure at the intermediate length scales, where transport phenomena govern the spatial and temporal evolution of the structure that involves nucleation and growth.
Book Chapter
Modeling of Microsegregation and Macrosegregation
Available to PurchaseBook: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005237
EISBN: 978-1-62708-187-0
... Abstract In order to model macrosegregation, one must consider convection and the partitioning of segregating elements at the dendritic length scale. This article describes microsegregation with diffusion in the solid. It presents a continuum model of macrosegregation and illustrates...
Abstract
In order to model macrosegregation, one must consider convection and the partitioning of segregating elements at the dendritic length scale. This article describes microsegregation with diffusion in the solid. It presents a continuum model of macrosegregation and illustrates the simulation of macrosegregation and microsegregation.
Book Chapter
Modeling of Stress, Distortion, and Hot Tearing
Available to PurchaseBook: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005238
EISBN: 978-1-62708-187-0
... formulation, multidomain approaches, and arbitrary Lagrangian Eulerian method in solidification modeling. It illustrates the sand casting of braking disks and continuous casting of steel slabs. continuous casting distortion hot tearing mechanical behavior model validation sand casting steel slabs...
Abstract
This article summarizes some issues and approaches in performing computational analyses of mechanical behavior, distortion, and hot tearing during solidification. It presents the governing equations and describes the methods used to solve them. The article reviews the finite element formulation, multidomain approaches, and arbitrary Lagrangian Eulerian method in solidification modeling. It illustrates the sand casting of braking disks and continuous casting of steel slabs.
Book Chapter
Modeling of Thermal-Electrical-Mechanical Coupling in Fusion Welding
Available to PurchaseSeries: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005634
EISBN: 978-1-62708-174-0
... and electrode-sheet interfaces. The distribution can be estimated based on the discretized geometry used for the numerical modeling. The article also details the results obtained from this modeling. contact resistivity distribution couplings discretized geometry electrical-thermal-mechanical analysis...
Abstract
This article outlines a general approach to develop a coupled electrical-thermal-mechanical analysis for the resistance spot welding process. It provides information on the discretization of sheet-electrode geometry and distribution of contact resistivity along the sheet-sheet and electrode-sheet interfaces. The distribution can be estimated based on the discretized geometry used for the numerical modeling. The article also details the results obtained from this modeling.
Book Chapter
Modeling of Metallurgical Microstructure Evolution in Fusion Welding
Available to PurchaseSeries: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005599
EISBN: 978-1-62708-174-0
... Abstract This article focuses on the general internal state variable method, and its simplification, for single-parameter models, in which the microstructure evolution may be treated as an isokinetic reaction. It explains that isokinetic microstructure models are applied to diffusional...
Abstract
This article focuses on the general internal state variable method, and its simplification, for single-parameter models, in which the microstructure evolution may be treated as an isokinetic reaction. It explains that isokinetic microstructure models are applied to diffusional transformations in fusion welding, covering particle dissolution, growth, and coarsening of precipitates in the heat-affected zone. The article discusses the versatility of the internal state variable approach in modeling of nonisothermal transformations for various materials and processes. It describes the process models applied to predict the microstructure evolution in Al-Mg-Si alloys during multistage thermal processing involving heat treatment and welding. The article also provides information on the microstructure models exploited in engineering design to optimize the load-bearing capacity of welded aluminum components.
Book Chapter
Numerical Aspects of Modeling Welds
Available to PurchaseSeries: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005587
EISBN: 978-1-62708-174-0
... Abstract This article is a comprehensive collection of formulas and numerical solutions, addressing many heat-transfer scenarios encountered in welds. It provides detailed explanations and dimensioned drawings in order to discuss the geometry of weld models, transfer of energy and heat in welds...
Abstract
This article is a comprehensive collection of formulas and numerical solutions, addressing many heat-transfer scenarios encountered in welds. It provides detailed explanations and dimensioned drawings in order to discuss the geometry of weld models, transfer of energy and heat in welds, microstructure evaluation, thermal stress analysis, and fluid flow in the weld pool.
Book Chapter
Introduction to Integrated Weld Modeling
Available to PurchaseSeries: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005561
EISBN: 978-1-62708-174-0
... Abstract This article provides an overview of integrated weld modeling and discusses the fundamentals of the underlying physics and methodologies involved in process modeling. It presents approaches for microstructure modeling that help to predict phase fractions as well as grain size...
Abstract
This article provides an overview of integrated weld modeling and discusses the fundamentals of the underlying physics and methodologies involved in process modeling. It presents approaches for microstructure modeling that help to predict phase fractions as well as grain size in the heat-affected zone and weld metal region as a function of alloy composition and thermal cycles. The article discusses the uses of computational thermodynamic and kinetic tools. It describes the concept of performance modeling, whose goal relates to the prediction of weldability, geometrical distortion, and/or locked-in residual stress as a function of material, restraint, process, and process parameters as well as service temperature. Finally, the article presents a case study, evaluating the use of X-65 steels using the E-WeldPredictor tool.
Book Chapter
Characterization and Modeling of the Heat Source
Available to PurchaseSeries: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005603
EISBN: 978-1-62708-174-0
... simplified and detailed heat-source models that have been used in the modeling of arc welding, high-energy-density welding, and resistance welding. arc welding direct heat source electric arc welding electron beam welding fusion welding gas metal arc welding gas tungsten arc welding heat-source...
Abstract
Three types of energy are used primarily as direct heat sources for fusion welding: electric arcs, laser beams, and electron beams. This article reviews the physical phenomena that influence the input-energy distribution of the heat source for fusion welding. It also discusses several simplified and detailed heat-source models that have been used in the modeling of arc welding, high-energy-density welding, and resistance welding.
Book Chapter
Modeling of Heat and Mass Transfer in Fusion Welding
Available to PurchaseSeries: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005636
EISBN: 978-1-62708-174-0
... Abstract This article provides a comprehensive review and critical assessment of numerical modeling of heat and mass transfer in fusion welding. The different fusion welding processes are gas tungsten arc welding, gas metal arc welding, laser welding, electron beam welding, and laser-arc hybrid...
Abstract
This article provides a comprehensive review and critical assessment of numerical modeling of heat and mass transfer in fusion welding. The different fusion welding processes are gas tungsten arc welding, gas metal arc welding, laser welding, electron beam welding, and laser-arc hybrid welding. The article presents the mathematical equations of mass, momentum, energy, and species conservation. It reviews the applications of heat transfer and fluid flow models for different welding processes. Finally, the article discusses the approaches to improve reliability of, and reduce uncertainty in, numerical models.
Book Chapter
Modeling of Thermomechanical Phenomena in Fusion Welding
Available to PurchaseSeries: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005604
EISBN: 978-1-62708-174-0
... of the simulation results, simplifications and assumptions as a prerequisite for modeling, and thermomechanical simulation. The article concludes with information on the sensitivity of the material properties data with respect to the simulation results. It also provides hints on the central challenge of having...
Abstract
This article focuses on the necessary basics for thermomechanical fusion welding simulations and provides an overview of the specific aspects to be considered for a simulation project. These aspects include the required material properties, experimental data needed for validation of the simulation results, simplifications and assumptions as a prerequisite for modeling, and thermomechanical simulation. The article concludes with information on the sensitivity of the material properties data with respect to the simulation results. It also provides hints on the central challenge of having the right material properties at hand for a specific simulation task.
1