1-20 of 278

Search Results for military composite aircraft structures

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002416
EISBN: 978-1-62708-193-1
... Abstract This article presents the damage tolerance criteria for military composite aircraft structures to safely operate the structures with initial defects or in-service damage. It describes the effects of defects, such as wrinkles in aircraft structures, and the reduction in compressive...
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003477
EISBN: 978-1-62708-195-5
... military aircraft applications use carbon-fiber-reinforced epoxy composites. About 26% of the structural weight of the U.S. Navy's AV-8B is carbon-fiber-reinforced composites. Components include the wing box, forward fuselage, horizontal stabilizer, elevators, rudder and other control surfaces...
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003386
EISBN: 978-1-62708-195-5
... summarizes damage tolerance criteria and durability criteria for military aircraft. It discusses the damage tolerance design philosophy for metallic structures and composite structures of the aircraft. The article describes the implementation of a damage tolerance analysis methodology in terms...
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004131
EISBN: 978-1-62708-184-9
... inspection interval (SII) Practical Life-Enhancement Methods Structural Parts Various life-enhancement techniques are already available, some of them being commonly used on operational aircraft (material substitution, cold working, shot peening, and composite patches), and many others are still...
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003452
EISBN: 978-1-62708-195-5
... bonded repair. Some examples of successful repairs to military aircraft are also discussed. composites bonded repair advanced composite repairs adhesively bonded repair military aircraft metal structures MODERN AIRCRAFT are becoming increasingly sophisticated and therefore more expensive...
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004100
EISBN: 978-1-62708-184-9
... add up to 20 years service life to steel structures in marine atmospheres. Aluminum and zinc coatings are the primary coatings in use and thickness, composition, and microstructure of the coating are the key variables affecting service life of the coated structure. Organic coatings are the principal...
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004119
EISBN: 978-1-62708-184-9
... matters: military specifications and standards; corrosion of military facilities; ground vehicle corrosion; armament corrosion; design, in-process, and field corrosion problems; high-temperature corrosion/oxidation; military aircraft; engines and turbine blades in naval environments; protective coatings...
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003459
EISBN: 978-1-62708-195-5
... and autoclaves offer the capability to use original molds (if available) and require that panels be removed from the structure. The size of the repaired panel is limited by the size of the available equipment. Selected References Selected References • Advances in Aircraft Composite Repair Symposium...
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003490
EISBN: 978-1-62708-195-5
... into existence as an industrial material. Their potential benefits for structural applications were recognized in 1941 when the first task force was initiated at Wright-Patterson Air Force Base to examine fiber-reinforced plastics for aircraft applications. In 1943, the first reinforced composite airframe...
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003411
EISBN: 978-1-62708-195-5
... has played an important role in advancing the use of composites for both commercial and military aircraft applications. Tape laying will continue to be a highly productive and cost-effective solution as more parts are converted from aluminum to composite and as new programs consider composites...
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003457
EISBN: 978-1-62708-195-5
...,” structures made of composites are expected by the aircraft operator to be equivalent to or better than the previous aircraft models or better than the same structure made in metallic materials; preferably they will require no routine maintenance. The “period of time” for structures is usually the life...
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003368
EISBN: 978-1-62708-195-5
... composites fabrication structural laminates aerospace applications THERMOPLASTICS have attractive mechanical properties for many supersonic aircraft requirements and for most commercial aircraft requirements. They also offer dimensional stability and attractive dielectric characteristics. Good flame...
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003350
EISBN: 978-1-62708-195-5
... of a resurgence lately in the use of composite patch repairs of crack damage in aluminum aircraft structure. Carbon Fibers Although the search for high- performance reinforcing fibers was highly successful, the early limited demand outside the military aerospace industry did not permit the cost reductions...
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004128
EISBN: 978-1-62708-184-9
... Abstract Corrosion, fatigue, and their synergistic interactions are among the principal causes of damage to aircraft structures. This article describes aircraft corrosion fatigue assessment in the context of different approaches used to manage aircraft structural integrity, schedule aircraft...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003031
EISBN: 978-1-62708-200-6
...” in this Volume. Composite materials were developed because no single, homogeneous structural material could be found that had all of the desired attributes for a given application. Fiber-reinforced composites were developed in response to demands of the military aerospace community, which is under constant...
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003456
EISBN: 978-1-62708-195-5
... Abstract Maintainability is a function of the durability, damage tolerance, and repairability of a structure. This article discusses the configurations of composite structures, such as sandwich, stiffened-skin, and monolithic structures, used in commercial aircraft composites. It describes...
Book Chapter

Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004221
EISBN: 978-1-62708-184-9
... material demands of various industries, the environments in which they operate, and the environments they create all contribute to the forms of corrosion that are manifested. Aviation In military and commercial aviation, high-strength aluminum alloys in the aircraft must be maintained. Exfoliation...
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003485
EISBN: 978-1-62708-195-5
..., design, manufacturing scale-up, and certification of MMCs. As a result, a number of significant MMC applications are now in service in the aeronautical field. Metal-matrix composites are used in both military and commercial aeronautical systems. Major applications exist for aerostructural components...
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004127
EISBN: 978-1-62708-184-9
... Abstract This article describes the influences of the operational environments of U.S. Navy aircraft during corrosion-control process. The most widely used materials in airframe structures and components, such as aluminum, steel, titanium, and magnesium alloy systems, are reviewed. The article...
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003458
EISBN: 978-1-62708-195-5
... and fabrication anomalies and/or unknown stress states around the repaired region, the repair scheme and parent structure should be regularly monitored for ongoing validation. Validation and Certification of Repairs The relative infancy of composite-material application in aircraft structures...