Skip Nav Destination
Close Modal
Search Results for
microwave scattering
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 61 Search Results for
microwave scattering
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 August 2018
Book Chapter
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006475
EISBN: 978-1-62708-190-0
... for microwaves. It discusses the advantages and limitations of inspection with microwaves. The article discusses the physical principles, including reflection and refraction, absorption and dispersion, scattering, and standing waves. It provides a discussion on terahertz (THz) imaging for nondestructive...
Abstract
Electromagnetic signals at microwave and millimeter-wave frequencies are well suited for inspecting dielectric materials and composite structures in many critical applications. This article presents a partial list of reported nondestructive testing (NDT) application areas for microwaves. It discusses the advantages and limitations of inspection with microwaves. The article discusses the physical principles, including reflection and refraction, absorption and dispersion, scattering, and standing waves. It provides a discussion on terahertz (THz) imaging for nondestructive evaluation (NDE). The article concludes with information on ground-penetration radar (GPR) that uses electromagnetic radiation and detects the reflected signals from subsurface structures.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003235
EISBN: 978-1-62708-199-3
...-frequency, continuous-wave reflection Swept-frequency, continuous-wave reflection Pulse-modulated reflection Fixed-frequency standing waves Fixed-frequency reflection scattering Microwave holography Microwave surface impedance Microwave detection of stress corrosion Each...
Abstract
Microwaves (or radar waves) are a form of electromagnetic radiation with wavelengths between 1000 cm and 1 mm in free space. One of the first important uses of microwaves in nondestructive evaluation was for components such as waveguides, attenuators, cavities, antennas, and antenna covers (radomes). This article focuses on the microwave inspection methods that were subsequently developed for evaluation of moisture content in dielectric materials; thickness measurements of thin metallic coatings on dielectric substrates; and detection of voids, delaminations, macroporosity, inclusions, and other flaws in plastic or ceramic materials. It also discusses the advantages and disadvantages and the general approaches that have been used in the development of microwave nondestructive inspection.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003658
EISBN: 978-1-62708-182-5
...-6200, presented in Proc. National Association of Corrosion Engineers Symposium 2000 ( Orlando, FL ), NACE International, March 2000 6. Liu J. M. , Microwave Scattering for the Characterization of a Disc-Shape Void in Dielectric Materials and Composites , Proc. of the 24th Annual...
Abstract
Microwave and guided wave (GW) nondestructive evaluation (NDE) techniques are capable of detecting corrosion damage, cracks, and other defect types in inaccessible areas. This article describes the operation principles of the techniques and provides information on hidden corrosion detection and the applications of microwave NDE devices and GW ultrasonic NDE devices.
Image
Published: 01 August 2018
Fig. 8 Relaxation of water molecules in the microwave region causes extremely high absorption and wave scattering, which is advantageous for moisture-level measurements.
More
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001750
EISBN: 978-1-62708-178-8
... sometimes be ordered magnetic solids, such as ferromagnets. If placed in a microwave-resonant cavity between the pole pieces of a strong electromagnet, such a sample absorbs microwave energy at particular values of the magnetic field that are characteristic of the positions and the crystalline environments...
Abstract
Electron spin resonance (ESR), or electron paramagnetic resonance (EPR), is an analytical technique that can extract a great deal of information from any material containing unpaired electrons. This article explains how ESR works and where it applies in materials characterization. It describes a typical ESR spectrometer and explains how to tune it to optimize critical electromagnetic interactions in the test sample. It also identifies compounds and elements most suited for ESR analysis and explains how to extract supplementary information from test samples based on the time it takes electrons to return to equilibrium from their resonant state. Two of the most common methods for measuring this relaxation time are presented as are several application examples.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001751
EISBN: 978-1-62708-178-8
... Abstract Ferromagnetic resonance (FMR) is used in the identification of the magnetic state of materials, the quantitative determination of static magnetic parameters, and the determination of microwave losses. This article describes the theory of ferromagnetic resonance and provides information...
Abstract
Ferromagnetic resonance (FMR) is used in the identification of the magnetic state of materials, the quantitative determination of static magnetic parameters, and the determination of microwave losses. This article describes the theory of ferromagnetic resonance and provides information on reflection spectrometers, microwave spectrometers, and ferromagnetic anti-resonance spectrometers used for measuring FMR. It also discusses the applications of FMR and provides several detailed examples.
Book Chapter
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0005692
EISBN: 978-1-62708-178-8
... of a field ion element due to a change in chemical with a small energy loss. The back- microscope with a hole in its screen open- bonding relative to a specified element or scattered electron yield is strongly de- ing into a mass spectrometer; atoms are compound. pendent upon atomic number, qualita- removed...
Book Chapter
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006748
EISBN: 978-1-62708-213-6
...) troscopy in which the fuel and oxidizing of elasticity and Poisson s ratio. Microwave 3 Â 105 to 3 Â 106 (30 to 300 mm) gases emerge from separate ports and are 3 Â 106 to 1 Â 1010 (0.3 mm to 1 m) mixed in the ame itself. One of the gases, elastic scattering. Collisions between particles usually...
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003056
EISBN: 978-1-62708-200-6
Abstract
Many applications of ceramics and glasses require them to be joined to each other or to other materials such as metals. This article focuses on ceramic joining technologies, including glass-metal sealing, glass-ceramic/metal joining, ceramic-metal joining, ceramic-ceramic joining, and the more advanced joining of nonoxide ceramics. It also discusses metallizing, brazing, diffusion bonding, and chemical bonding.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006578
EISBN: 978-1-62708-290-7
... ), thermal decomposition ( Ref 3 ), or microwave sintering ( Ref 40 ). For example, both pure metallic and ceramic microscale lattices, which were extraordinary light and stiff, were fabricated by using microscale MIP-SL. After the printing process, thermal decomposition and sintering were applied to remove...
Abstract
This article presents a detailed account of the processes involved in vat-photopolymerization-based fabrication of ceramics, namely bioceramics, structural ceramics, piezoelectric ceramics, optical ceramics, and polymer-derived ceramics. Information and methods of material preparation, curing characteristics, green-part fabrication, property identification, process design and planning, and quality control and optimization are introduced. The article also provides information on postprocessing techniques, namely debinding and sintering, as well as on the phenomenon of shrinkage and compensation.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003062
EISBN: 978-1-62708-200-6
... applications, but TiO 2 is also being developed as an oxygen sensitive resistive sensor. Other categories of ceramic materials include ferrites and ceramic superconductors. Recent developments in ferrites have been related primarily to their use as recording heads, but research in the area of microwave...
Abstract
Ceramic materials serve important insulative, capacitive, conductive, resistive, sensor, electrooptic, and magnetic functions in a wide variety of electrical and electronic circuitry. This article focuses on various applications of advanced ceramics in both electric power and electronics industry, namely, dielectric, piezoelectric, ferroelectric, sensing, magnetic and superconducting devices.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001294
EISBN: 978-1-62708-170-2
... the vapor to be ionized via nonresonant multiphoton processes, creating a plasma above the target. As the density of electrons increases, the laser radiation is absorbed preferentially in the plasma by inverse bremsstrahlung scattering ( Ref 6 ). The absorption further heats the plasma and at the same time...
Abstract
This article presents a general description of pulsed-laser deposition. It describes the components of pulsed-laser deposition equipment. The article also discusses the effects of angular distribution of materials. Finally, the article reviews the characteristics of high-temperature superconductors and ferroelectric materials.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006448
EISBN: 978-1-62708-190-0
... associated with radiography. There are two main aspects of safety: monitoring radiation dosage and protecting personnel. The article summarizes the major factors involved in both and discusses the operating characteristics of X-ray tubes. It describes the various methods of controlling scattered radiation...
Abstract
Radiography is the process or technique of producing images of a solid material on a paper/photographic film or on a fluorescent screen by means of radiation particles or electromagnetic waves of short wavelength. This article reviews the general characteristics and safety principles associated with radiography. There are two main aspects of safety: monitoring radiation dosage and protecting personnel. The article summarizes the major factors involved in both and discusses the operating characteristics of X-ray tubes. It describes the various methods of controlling scattered radiation: use of lead screens; protection against backscatter and scatter from external objects; and use of masks, diaphragms, collimators, and filtration. The article concludes with a discussion on image conversion media, including recording media, lead screens, lead oxide screens, and fluorescent intensifying screens.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.9781627081788
EISBN: 978-1-62708-178-8
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006443
EISBN: 978-1-62708-190-0
Abstract
The success of a reliable non-destructive evaluation (NDE) application depends greatly on the expertise and thoroughness of the NDE engineering that is performed. This article discusses the general considerations of NDE in terms of NDE response and NDE system management and schedule. It describes the NDE engineering and NDE process control, along with some case studies related to the applications of NDE. The article reviews various models for predicting NDE reliability, such as ultrasonic inspection model, eddy current inspection model, and radiographic inspection model. It concludes with an example that illustrates the integration of an ultrasonic reliability model with a CAD system.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003238
EISBN: 978-1-62708-199-3
... of electromagnetic radiation (such as visible light, microwaves, and radio waves) only in their wavelengths, although there is not always a distinct transition from one type of electromagnetic radiation to another ( Fig. 2 ). Only x-rays and γ-rays, because of their relatively short wavelengths (high energies), have...
Abstract
Radiography is a nondestructive-inspection method that is based on the differential absorption of penetrating radiation by the part or test piece (object) being inspected. This article discusses the fundamentals and general applications of radiography, and describes the sources of radiation in radiographic inspection, including X-rays and gamma rays. It deals with the characteristics that differentiate neutron radiography from X-ray or gamma-ray radiography. The geometric principles of shadow formation, image conversion, variation of attenuation with test-piece thickness, and many other factors that govern the exposure and processing of a neutron radiograph are similar to those for radiography using X-rays or gamma rays.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006456
EISBN: 978-1-62708-190-0
... demonstrated with a number of different types of energy beams, such as ultrasound, electrons, protons, α-particles, lasers, and microwaves. In industrial nondestructive evaluations (NDEs), however, only x-ray computed tomography (XCT) is considered to have widespread value. For this reason, XCT is also...
Abstract
Computed tomography (CT) is an imaging technique that generates a three-dimensional (3-D) volumetric image of a test piece. This article illustrates the basic principles of CT and provides information on the types, applications, and capabilities of CT systems. A comparison of performance characteristics for film radiography, real-time radiography, and X-ray computed tomography is presented in a table. A functional block diagram of a typical computed tomography system is provided. The article discusses CT scanning geometry that is used to acquire the necessary transmission data. It also provides information on digital radiography, image processing and analysis, dual-energy imaging, and partial angle imaging, of a CT system.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003052
EISBN: 978-1-62708-200-6
... in an applied field Change of birefringence with applied field Electro-optics, headup displays, flash goggles Actuators ZTS (zirconium titanium stannate) High-purity oxides Stable permittivity at high frequencies over a wide temperature range and very low dielectric and insertion losses Microwave...
Abstract
This article explains how ceramic powders are made. It begins by briefly describing the raw materials used in structural clay products, whitewares, refractories, and advanced ceramics. It then examines various additives that promote uniformity at different stages of the process. After a description of the comminution process (wet and dry milling methods), it discusses batching and mixing operations and granulation methods. The article also deals with the effect of process variables and the steps involved in chemical synthesis, including preparation from solution and gas-phase reactions, filtration and washing, and powder recovery techniques. It concludes with a discussion on characterization, centering on size distribution analysis, specific surface area, density, porosity chemical composition, phase, and surface composition.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006449
EISBN: 978-1-62708-190-0
...-effect sensors, and magnetic-particle techniques), ultrasonic, acoustic emission, guided wave, laser testing, microwave, radiographic, thermal and infrared testing, x-ray diffraction, and visual inspection. Selection of the NDT method depends on product manufacturing specifications and requirements...
Abstract
This article provides information on the application of nondestructive examination (NDE) technologies to tube and pipe products. These include modeling and simulation methods, eddy-current methods, magnetic methods, acoustic methods, and physical methods. A summary of nondestructive examination methods based on flaw type and product stage is presented in a table. The article also discusses in-service inspection of tubular products and presents an example that illustrates the importance of nondestructive testing (NDT) for welds in austenitic stainless steel tubing.
1