Skip Nav Destination
Close Modal
Search Results for
microwave reflection
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 97 Search Results for
microwave reflection
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006475
EISBN: 978-1-62708-190-0
... for microwaves. It discusses the advantages and limitations of inspection with microwaves. The article discusses the physical principles, including reflection and refraction, absorption and dispersion, scattering, and standing waves. It provides a discussion on terahertz (THz) imaging for nondestructive...
Abstract
Electromagnetic signals at microwave and millimeter-wave frequencies are well suited for inspecting dielectric materials and composite structures in many critical applications. This article presents a partial list of reported nondestructive testing (NDT) application areas for microwaves. It discusses the advantages and limitations of inspection with microwaves. The article discusses the physical principles, including reflection and refraction, absorption and dispersion, scattering, and standing waves. It provides a discussion on terahertz (THz) imaging for nondestructive evaluation (NDE). The article concludes with information on ground-penetration radar (GPR) that uses electromagnetic radiation and detects the reflected signals from subsurface structures.
Image
Published: 01 January 1986
Fig. 3 Power reflected from a microwave-resonant cavity as a function of frequency. The resonant frequency is ω 0 the full width at half amplitude is Δω.
More
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001751
EISBN: 978-1-62708-178-8
... on reflection spectrometers, microwave spectrometers, and ferromagnetic anti-resonance spectrometers used for measuring FMR. It also discusses the applications of FMR and provides several detailed examples. ferromagnetic resonance magnetization microwave spectrometers quantitative analysis...
Abstract
Ferromagnetic resonance (FMR) is used in the identification of the magnetic state of materials, the quantitative determination of static magnetic parameters, and the determination of microwave losses. This article describes the theory of ferromagnetic resonance and provides information on reflection spectrometers, microwave spectrometers, and ferromagnetic anti-resonance spectrometers used for measuring FMR. It also discusses the applications of FMR and provides several detailed examples.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003235
EISBN: 978-1-62708-199-3
... longer than those of light waves, microwaves penetrate deeply into materials, with the depth of penetration dependent on the conductivity, permittivity, and permeability of the materials. Microwaves are also reflected from any internal boundaries and interact with the molecules that constitute...
Abstract
Microwaves (or radar waves) are a form of electromagnetic radiation with wavelengths between 1000 cm and 1 mm in free space. One of the first important uses of microwaves in nondestructive evaluation was for components such as waveguides, attenuators, cavities, antennas, and antenna covers (radomes). This article focuses on the microwave inspection methods that were subsequently developed for evaluation of moisture content in dielectric materials; thickness measurements of thin metallic coatings on dielectric substrates; and detection of voids, delaminations, macroporosity, inclusions, and other flaws in plastic or ceramic materials. It also discusses the advantages and disadvantages and the general approaches that have been used in the development of microwave nondestructive inspection.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003658
EISBN: 978-1-62708-182-5
... from one application to the next. Microwave NDE Devices Microwave transmitters provide the incident energy for an inspection. The most commonly used transmitters for corrosion detection are actually transceivers; diodes in the transmitter receive the reflected signal. The incident and reflected...
Abstract
Microwave and guided wave (GW) nondestructive evaluation (NDE) techniques are capable of detecting corrosion damage, cracks, and other defect types in inaccessible areas. This article describes the operation principles of the techniques and provides information on hidden corrosion detection and the applications of microwave NDE devices and GW ultrasonic NDE devices.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001750
EISBN: 978-1-62708-178-8
...) measures the microwave frequency. A directional coupler side arm monitors klystron output. The circulator impresses the incident microwave power on the microwave-resonant cavity and directs the reflected signal to the crystal detector. The detector demodulates the microwaves by extracting the information...
Abstract
Electron spin resonance (ESR), or electron paramagnetic resonance (EPR), is an analytical technique that can extract a great deal of information from any material containing unpaired electrons. This article explains how ESR works and where it applies in materials characterization. It describes a typical ESR spectrometer and explains how to tune it to optimize critical electromagnetic interactions in the test sample. It also identifies compounds and elements most suited for ESR analysis and explains how to extract supplementary information from test samples based on the time it takes electrons to return to equilibrium from their resonant state. Two of the most common methods for measuring this relaxation time are presented as are several application examples.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006045
EISBN: 978-1-62708-175-7
... the sintering of blended elemental powders, high-strength titanium alloys, and porous material as well as the sintering of titanium powders by microwave heating. cold isostatic pressing die pressing direct powder rolling high-strength titanium alloys microwave heating powder consolidation powder...
Abstract
Consolidation of titanium powders at room temperature may be performed by low-cost conventional powder metallurgy processes. This article provides information on various consolidation methods, namely, die pressing, direct powder rolling, and cold isostatic pressing. It also describes the sintering of blended elemental powders, high-strength titanium alloys, and porous material as well as the sintering of titanium powders by microwave heating.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003653
EISBN: 978-1-62708-182-5
... microwave, ultrasonic, and acoustic techniques are finding much greater applications for monitoring hidden corrosion and cracks. For instance, a microwave corrosion detector (MCD) can scan and locate corrosion underneath paint using microwave sources and analyzing the reflected wave to determine...
Abstract
This article focuses on the methods that are being developed for detecting and monitoring corrosion: electrochemical methods, electromagnetic or sound wave methods, fiber-optic technology, fluorescence methods, and the Diffracto Sight method. It reviews the importance of data management and the Corrosion Expert System. It concludes with information on the simulation and modeling for incorporating the mechanisms of corrosion prevention into military hardware systems design and operation.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001469
EISBN: 978-1-62708-173-3
... method. The techniques are hot-tool, hot-gas, extrusion, focused infrared, laser, friction, vibration, spin, ultrasonic, and electromagnetic welding techniques (resistance, induction, dielectric, and microwave welding). The article concludes with a discussion on welding evaluation methods...
Abstract
Polymeric materials that possess similar solubility parameters can be joined using a variety of polymer joining techniques. This article describes commonly available fusion-welding techniques such as joining methods, key joining parameters, and the application areas of each joining method. The techniques are hot-tool, hot-gas, extrusion, focused infrared, laser, friction, vibration, spin, ultrasonic, and electromagnetic welding techniques (resistance, induction, dielectric, and microwave welding). The article concludes with a discussion on welding evaluation methods.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001345
EISBN: 978-1-62708-173-3
... and laser brazing, microwave brazing, and braze welding. braze welding brazing dip brazing electron-beam brazing exothermic brazing filler-metal flow furnace brazing induction brazing infrared brazing laser brazing manual torch brazing microwave brazing resistance brazing surface...
Abstract
This article describes the physical principles of brazing with illustrations and details elements of the brazing process. The elements of brazing process include filler-metal flow, base-metal characteristics, filler-metal characteristics, surface preparation, joint design and clearance, temperature and time, rate and source of heating, and protection by an atmosphere or flux. The article explains the different types of brazing processes: manual torch brazing, furnace brazing, induction brazing, dip brazing, resistance brazing, infrared (quartz) brazing, exothermic brazing, electron-beam and laser brazing, microwave brazing, and braze welding.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006936
EISBN: 978-1-62708-395-9
... of the efficiency of these substances in transmitting high-frequency sound waves, as air strongly attenuates sound waves in the ultrasonic-frequency regime ( Ref 8 – 10 ). The ultrasonic wave travels through the material under inspection and interacts with its microstructure. Sound is reflected from interfaces...
Abstract
Of the many different nondestructive evaluation (NDE) techniques, ultrasonic inspection continues to be the leading nondestructive method for inspecting composite materials, because measurements can be quantitative and the typical defect geometries and orientations lend themselves to detection and characterization. This article focuses on the three common methods for ultrasonic nondestructive inspection of plastics, namely pitch-catch, through-transmission, and pulse-echo, as well as the three basic types of ultrasonic NDE scans: the A-scan, B-scan, and C-scan. The discussion includes the linear and phased array systems that are sometimes used for large-scale inspection tasks to reduce scan times, the various gating and image processing techniques, and how ultrasonic data are interpreted and presented. A brief section on future trends in ultrasonic inspection is presented at the end of the article.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003021
EISBN: 978-1-62708-200-6
... (vibration, spin, and ultrasonic), and electromagnetic welding (resistance, induction, dielectric, and microwave). It concludes with the evaluation of welds using destructive and nondestructive testing. adhesive bonding adhesives electromagnetic welding friction welding fusion welding mechanical...
Abstract
This article discusses the classification of the attachment and joining methods in plastics, including mechanical fastening, adhesive bonding, solvent bonding, and welding. It describes the mechanical fastening techniques used to join both similar and dissimilar materials with machine screws or bolts, nuts and washers, molded-in threads, self-threading screws, rivets, spring-steel fasteners, press fits, and snap fits. The article explains solvent bonding used for thermoplastic parts, and tabulates the solvent types used with various plastics. It also describes the surface preparation of plastics, chemical treatment for adhesion, and tabulates the adhesive types for bonding plastics to plastics and plastics to nonplastics. The article briefly describes the welding processes of thermoplastics, including fusion welding (hot-tool, hot gas, extrusion, and focused infrared), friction welding (vibration, spin, and ultrasonic), and electromagnetic welding (resistance, induction, dielectric, and microwave). It concludes with the evaluation of welds using destructive and nondestructive testing.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003230
EISBN: 978-1-62708-199-3
..., reflects an image from the side of the scope. Side, forward-oblique, and retrospective viewing heads provide better resolution and a higher degree of image contrast. A mirror sheath also produces an inverse image and can produce unwanted reflections from the shaft. Scanning In addition...
Abstract
Visual inspection is a nondestructive testing technique that provides a means to detect and examine a variety of surface flaws, such as corrosion, contamination, surface finish, and surface discontinuities. This article discusses the equipment used to aid visual inspection, including borescopes (rigid and flexible), optical sensors, and magnifying systems. The article discusses the special features of borescopes, the factors that influence the choice of a flexible or rigid borescope for use in a specific application, and some of the image sensors used in visual inspection.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006578
EISBN: 978-1-62708-290-7
... ), continuous light interface process ( Ref 32 ), physical-field-assistedstereolithography ( Ref 33 ), and TPP ( Ref 34 ). In LWSL, a laser beam with controllable power and wavelength is reflected by high-speed-scanning galvo mirrors and is further focused on the surface of the liquid resin ( Ref 26...
Abstract
This article presents a detailed account of the processes involved in vat-photopolymerization-based fabrication of ceramics, namely bioceramics, structural ceramics, piezoelectric ceramics, optical ceramics, and polymer-derived ceramics. Information and methods of material preparation, curing characteristics, green-part fabrication, property identification, process design and planning, and quality control and optimization are introduced. The article also provides information on postprocessing techniques, namely debinding and sintering, as well as on the phenomenon of shrinkage and compensation.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003062
EISBN: 978-1-62708-200-6
... applications, but TiO 2 is also being developed as an oxygen sensitive resistive sensor. Other categories of ceramic materials include ferrites and ceramic superconductors. Recent developments in ferrites have been related primarily to their use as recording heads, but research in the area of microwave...
Abstract
Ceramic materials serve important insulative, capacitive, conductive, resistive, sensor, electrooptic, and magnetic functions in a wide variety of electrical and electronic circuitry. This article focuses on various applications of advanced ceramics in both electric power and electronics industry, namely, dielectric, piezoelectric, ferroelectric, sensing, magnetic and superconducting devices.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006471
EISBN: 978-1-62708-190-0
... silicon processing technology to reduce the acoustic impedance of a front plate to enhance matching to air ( Ref 10 ). There also are modalities that have been demonstrated which remain of research interest, for noncontact generation, such as time-gated microwaves for ultrasound generation ( Ref 11...
Abstract
This article discusses the advantages, disadvantages, applications, and selection criteria of various technologies and transduction modalities that can generate and detect ultrasonic waves. These include piezoelectric transducers, electromagnetic acoustic transducers (EMATs), laser ultrasound phased array transducers, magnetostriction transducers, and couplants. The article discusses four basic types of search units with piezoelectric transducers. These include the straight-beam contact type, the angle-beam contact type, the dual-element contact type, and the immersion type. The article concludes with information on immersion or contact type focused search units.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001091
EISBN: 978-1-62708-162-7
...), organic compounds that change their light reflection and refraction properties when a current is applied, are the most common substitute for LEDs. For example, LEDs have virtually been replaced by LCDs in one of their original applications—digital watches. The principal competition for gallium-base...
Abstract
Gallium-base components can be found in a variety of products ranging from compact disk players to advanced military electronic warfare systems, owing to the factor that it can emit light, has a greater resistance to radiation and operates at faster speeds and higher temperatures. This article discusses the uses of gallium in optoelectronic devices and integrated circuits and applications of gallium. The article discusses the properties and grades of gallium arsenide and also provides information on resources of gallium. The article talks about the recovery techniques, including recovery from bauxite, zinc ore and secondary recovery process and purification. The article briefly describes the fabrication process of gallium arsenide crystals. Furthermore, the article gives a short note on world supply and demand of gallium and concludes with research and development on gallium arsenide integrated circuits.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006903
EISBN: 978-1-62708-392-8
... mechanical strengths and hardness ( Fig. 1c ) ( Ref 9 , 15 ). The reduction of surface energy is the main driving force for the solid-state sintering process. Conventional and microwave heating are generally used for sintering green parts ( Ref 16 ). The green part is sintered by surface heating...
Abstract
Additive manufacturing (AM) technologies print three-dimensional (3D) parts through layer-by-layer deposition based on the digital input provided by a computer-aided design file. This article focuses on the binder jet printing process, common biomaterials used in this AM technique, and the clinical applications relevant to these systems. It reviews the challenges and future directions of binder-jetting-based 3D printing.
Book Chapter
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0005692
EISBN: 978-1-62708-178-8
... that is some dis- nk = 2d sin0, where n is the order of nomena. The inelastic scattering of elec- tance from the principal axis of the sys- reflection, k is the wavelength of x-rays, d trons in solids that produces a discrete tem. It results from different magnifica- is the distance between lattice planes...
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005879
EISBN: 978-1-62708-167-2
... ). The radiation could be considered by means of suitable procedures that make it possible to take into account multiple reflection phenomena. Such an approach assumes that within small temperature variations the EMF remains approximately the same. The process consists of one cycle of EMF calculation...
Abstract
Induction heating computations deal with a multiphysics problem containing analysis of several coupled physical fields such as electromagnetic, temperature, mechanical, and metallurgical. In order to solve coupled electromagnetic-temperature field problems, it is necessary to develop suitable algorithms and numerical procedures, which make it possible to deal with these nonlinear coupled problems. This article focuses on the most common approaches to coupled electromagnetic and heat transfer problems, namely, weak-, quasi-, and hard-coupled formulations.
1