1-20 of 927

Search Results for microstructure simulation

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005408
EISBN: 978-1-62708-196-2
... Abstract This article explores the potential of through-process simulations of the development of microstructure, texture, and resulting properties during the thermomechanical processing of Al-Mn-Mg alloys, starting from the as-cast ingot to final-gage sheet. It provides an introduction...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006277
EISBN: 978-1-62708-169-6
... energies and atomic mobilities are established as functions of temperature, pressure, and composition and serve directly as key inputs of any microstructure modeling. The article presents examples of the integrated computation tool set in simulating microstructural evolution. Burgers orientation...
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005950
EISBN: 978-1-62708-166-5
... of microstructure, distortion, residual stress, and cracking in gears, shafts, and bearing rings. bearing rings cracking distortion electrical conductivity gears heat treatment heat treatment simulation induction hardening magnetic permeability microstructure phase transformation residual stress...
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005405
EISBN: 978-1-62708-196-2
... sites of cyclic plastic strain intensification is pertinent to estimation of a fatigue limit. Table 1 outlines some of the considerations of dominant regimes of crack formation and propagation for HCF and LCF regimes defined in this manner. Microstructure-sensitive, simulation-assisted fatigue...
Image
Published: 01 June 2016
Fig. 21 Phase field simulation of primary α growth. (a) Initial microstructure (dispersed particles are α phase). (b) Snapshot at t = 1600 s. (c) Growth kinetics (for comparison, the open squares show results obtained from DICTRA simulation using the same thermodynamic and mobility databases More
Image
Published: 01 December 2009
Fig. 6 Evolution of microstructure during a Potts model simulation of a two-component system in which the initial distribution of components is equal and R A = R B = 0.5. The A and B components are differentiated by the gray scale. The simulation was performed using a square (1,2 More
Image
Published: 01 December 2009
Fig. 8 Evolution of microstructure during a Potts model simulation of a two-component system in which the initial distribution of components is unequal and the A-B boundaries have a mobility advantage: f B = 0.05, M A = M B = 1, M AB = 100. The A and B components are differentiated More
Image
Published: 01 December 2009
Fig. 15 Evolution of microstructure during a Potts model simulation of anisotropic grain growth of a single-texture component, using Read-Shockley energies and uniform mobilities. The simulation was performed using a square (1,2) lattice, Glauber dynamics, metropolis transition probability More
Image
Published: 01 December 2009
Fig. 17 Evolution of microstructure during a Potts model simulation of anisotropic grain growth of a single-texture component, using Read-Shockley energies and anisotropic mobilities to show the emergence of an abnormal grain More
Image
Published: 01 December 2009
Fig. 19 Evolution of microstructure during a Potts model simulation of anisotropic grain growth in a texture gradient, using Read-Shockley energies and anisotropic mobilities. The simulation was performed using a square (1,2) lattice, Glauber dynamics, metropolis transition probability More
Image
Published: 01 December 2009
Fig. 23 (a) Snapshot of a pinned microstructure in a Potts model simulation of Zener pinning on a 400 × 400 × 400 lattice, using particles with sizes 3 × 3 × 3. (b) Comparison of pinned grain size with experimental data. Source: Ref 26 More
Image
Published: 30 June 2023
Fig. 8 Direct simulation of (small) part-scale microstructure at four scan velocities. Source: Ref 30 More
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005414
EISBN: 978-1-62708-196-2
... Abstract Computer simulation of microstructural evolution during hot rolling of steels is a major topic of research and development in academia and industry. This article describes the methodology and procedures commonly employed to develop microstructural evolution models to simulate...
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005501
EISBN: 978-1-62708-197-9
... several commonly used microstructure simulation methods and presents ductile iron casting as an example to demonstrate the ability of microstructure simulation. The predictions for the major defects of casting, such as porosity, hot tearing, and macrosegregation, are highlighted. Finally, several industry...
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006976
EISBN: 978-1-62708-439-0
.... The article then provides an overview of thermal modeling. It presents a discussion on solid mechanics simulation and microstructure simulation. distortions metal additive manufacturing microstructure simulation residual stress solid mechanics simulation thermal modeling thermomechanical...
Image
Published: 01 January 2005
Fig. 9 Microstructural development for primary recrystallization simulated using a three-dimensional cellular automaton. Source: Ref 22 More
Image
Published: 01 January 2005
Fig. 10 Microstructural evolution during recrystallization simulated using a hybrid Monte Carlo-Potts cellular automaton model; the white grains are recrystallized. Source: Ref 23 More
Image
Published: 01 December 2004
Fig. 8 Simulated (upper row) and experimental (lower row) microstructures of atomized Al-10Cu (mass%) droplets with various droplet diameters: (a) 40 μm, (b) 100 μm, (c) 200 μm, and (d) 100 μm. Here (a), (b), and (c) indicate the microstructures shown in two-dimensional cross section and three More
Image
Published: 01 December 2004
Fig. 11 Microstructures of an Al-7Si (mass%) alloy. (a) Simulation ( Ref 18 ) and (b) experiment ( Ref 19 ) More
Image
Published: 01 December 2004
Fig. 12 Simulated microstructure. (a) Columnar cellular dendritic morphology. (b) Equiaxed dendritic morphology. (c) Columnar-to-equiaxed transition formation in unidirectional solidification of IN 718-5, a nickel-base superalloy with 5 wt% Nb. Source: Ref 21 More