Skip Nav Destination
Close Modal
Search Results for
microstructural spatial clustering
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 27 Search Results for
microstructural spatial clustering
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005410
EISBN: 978-1-62708-196-2
... through continuous fields such as the atomic concentration or long-range-order parameters. The spatial and temporal evolution of the microstructure is then driven by differential equations obeyed by these fields. Because this technique is the object of the article “Phase-Field Modeling of Microstructure...
Abstract
This article describes the results obtained by Volmer, Weber, Farkas, Becker, and Doring, which constitute the classical nucleation theory. These results are the predictions of the precipitate size distribution, steady-state nucleation rate, and incubation time. The article reviews a nucleating system as a homogeneous phase using the classical nucleation theory, along with heterophase fluctuations that led to the formation of precipitates. It discusses the gas cluster dynamics using the kinetic approach to describe nucleation. The article presents key parameters, such as cluster condensation and evaporation rates, to describe the time evolution of the system. The predictions and extensions of the classical nucleation theory are discussed. The article also provides the limitations of classical nucleation theories in cluster dynamics.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005207
EISBN: 978-1-62708-187-0
.... Nucleation during solidification is a thermally activated process involving a fluctuational growth in the sizes of clusters of solids. The article describes nucleation phenomenon such as homogeneous nucleation and heterogeneous nucleation. It discusses various grain refinement models, such as carbide-boride...
Abstract
This article discusses selected highlights of thermodynamic relationships during solidification and nucleation kinetics behavior in connection with the basis of nucleation treatments, such as grain refinement and inoculation, to provide a summary of nucleation phenomena during casting. Nucleation during solidification is a thermally activated process involving a fluctuational growth in the sizes of clusters of solids. The article describes nucleation phenomenon such as homogeneous nucleation and heterogeneous nucleation. It discusses various grain refinement models, such as carbide-boride model, free growth model, and constitutional undercooling model. The article concludes with a section on thermal analysis techniques for assessing grain-refining characteristics during master alloy processing.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005415
EISBN: 978-1-62708-196-2
... microstructure involves a large number of variables (one or several for each spatial coordinate, r , with each one regarded as a degree of freedom). An effective way to formulate their time evolution (the kinetics of microstructure change) is to define a total energy of the system and derive the kinetics along...
Abstract
This article discusses the fundamental aspects of phase-field microstructure modeling. It describes the evolution of microstructure modeling, including nucleation, growth, and coarsening. The article reviews two approaches used in the modeling nucleation of microstructure: the Langevin force approach and explicit nucleation algorithm. Calculation of activation energy and critical nucleus configuration is discussed. The article presents the deterministic phase-field kinetic equations for modeling growth and coarsening of microstructure. It also describes the material-specific model inputs, chemical free energy and kinetic coefficients, for phase-field microstructure modeling. The article provides four examples that illustrate some aspects of phase-field modeling.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005405
EISBN: 978-1-62708-196-2
... coefficient applicable to the microstructure scale considered, and c is the Coffin-Manson exponent. The spatial volume for nonlocal averaging of the driving force is the lesser of approximately 1 μm 3 or ℓ 3 , where ℓ is the scale of the transition crack length at which the crack grows out of the influence...
Abstract
The purposes and methods of fatigue modeling and simulation in high-cycle fatigue (HCF) regime are to design either failsafe components or components with a finite life and to quantify remaining life of components with pre-existing cracks using fracture mechanics, with the intent of monitoring via an inspection scheme. This article begins with a discussion on the stages of the fatigue damage process. It describes hierarchical multistage fatigue modeling and several key points regarding the physics of crack nucleation and microstructurally small crack propagation in the HCF regime. The article provides a description of the microstructure-sensitive modeling to model fatigue of several classes of advanced engineering alloys. It describes the various modeling and design processes designed against fatigue crack initiation. The article concludes with a discussion on the challenges in microstructure-sensitive fatigue modeling.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006277
EISBN: 978-1-62708-169-6
... ), pseudospinodal decomposition ( Ref 7 , 8 , 9 ), and spinodal decomposition of intermediate α phase obtained via congruent β → α transformation ( Ref 10 ). These TPs provide ample opportunities to engineer desired microstructures in terms of size, shape, and spatial distribution of α precipitates within the β...
Abstract
This article describes the integration of thermodynamic modeling, mobility database, and phase-transformation crystallography into phase-field modeling and its combination with transformation texture modeling to predict phase equilibrium, phase transformation, microstructure evolution, and transformation texture development during heat treatment of multicomponent alpha/beta and beta titanium alloys. It includes quantitative description of Burgers orientation relationship and path, discussion of lattice correspondence between the alpha and beta phases, and determination of the total number of Burgers correspondence variants and orientation variants. The article also includes calculation of the transformation strain with contributions from defect structures developed at alpha/beta interfaces as a precipitates grow in size. In the CALculation of PHAse Diagram (CALPHAD) framework, the Gibbs free energies and atomic mobilities are established as functions of temperature, pressure, and composition and serve directly as key inputs of any microstructure modeling. The article presents examples of the integrated computation tool set in simulating microstructural evolution.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003253
EISBN: 978-1-62708-199-3
..., then it collects and analyzes the ionized atoms or clusters of atoms ejected from the sample surface by this beam. Information can be obtained with lateral spatial resolution of 100 to 500 nm. The ions removed from the surface are identified by a highly sensitive mass spectrometer. This identification...
Abstract
This article describes the operation and capabilities of surface analysis methods of metals, including scanning electron microscopy, electron probe microanalysis, transmission electron microscopy, secondary ion mass spectroscopy, and X-ray photoelectron spectroscopy. It provides information on the capabilities, typical uses, spatial resolution, elemental analysis detection threshold and precision, limitations, sample requirements, and operating principles of the scanning auger microprobe.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005432
EISBN: 978-1-62708-196-2
... Abstract This article examines how cellular automaton (CA) can be applied to the simulation of static and dynamic recrystallization. It describes the steps involved in the CA simulation of recrystallization. These include defining the CA framework, generating the initial microstructure...
Abstract
This article examines how cellular automaton (CA) can be applied to the simulation of static and dynamic recrystallization. It describes the steps involved in the CA simulation of recrystallization. These include defining the CA framework, generating the initial microstructure, distributing nuclei of recrystallized grains, growing the recrystallized grains, and updating the dislocation density. The article concludes with information on the developments in CA simulations.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005247
EISBN: 978-1-62708-187-0
... while fully utilizing outstanding wear properties, primary silicon crystals should be controlled to uniform small size and have uniform spatial distribution. This can be accomplished by adding phosphorus to the melt, thus creating an abundance of AlP 3 nuclei suitable for initiating primary silicon...
Abstract
Primary silicon in hypereutectic aluminum-silicon alloys is very hard, not only imparting improved wear resistance but also decreasing tool life during machining. This article discusses the importance of primary silicon refinement and the process of accomplishing primary silicon refinement.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004002
EISBN: 978-1-62708-185-6
... evaluated the resulting mechanical behavior of the subscale forged billets. In part, this relates to the difficulty of testing adequately sized subscale billets due to equipment capacity limitations. However, the general effects of deformation processing on subsequent microstructure and properties have been...
Abstract
Discontinuously reinforced aluminum (DRA) alloy metal-matrix composites (MMCs) represent an advanced aluminum materials concept whereby ceramic particles, or whiskers, are added to aluminum-base alloys through the use of either ingot-melting or casting and/or powder-metallurgy (P/M) techniques. This article begins with a summary of general observations on the forging of discontinuously reinforced composites. It provides information on some of the specific experimental results obtained on various DRA systems, including 2xxx DRA alloys and cast DRA alloys. The article reviews the efforts on the modeling of behavior of specific alloy systems, with a comparison of experimental results to the modeling attempts. It concludes with information on the properties of deformation-processed DRA alloys.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005455
EISBN: 978-1-62708-196-2
... computational tools for the prediction of the interrelationships between microstructure and properties, and for this article, specifically tensile properties, for a wide range of materials. As noted previously, in any given metallic material, there are a number of contributing strengthening mechanisms. A...
Abstract
A computational tool would require the contribution of the strengthening mechanisms of metallic material to be predicted and then summed in an appropriate way to derive an estimate of the tensile properties. This article focuses on the modeling of deformation mechanisms pertinent to structural materials, namely, solid-solution strengthening, age/precipitation hardening, dispersion strengthening, grain size reduction, strengthening from cold work, and strengthening from interfaces. It explains the application of predictive models in the atomistic modeling of dislocation structures and cast aluminum property prediction. The article concludes with information on the use of rules-based approaches and data-mining techniques for quantitative predictions of tensile properties.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005412
EISBN: 978-1-62708-196-2
... can be described as being built of nanosized clusters of atoms interacting across the interface with each other. These clusters, or close-packed groups, interact with each other by means of elastic fields. However, if the interatomic interactions are relatively weak compared to the elastic...
Abstract
This article summarizes a physical model of an interface structure and shows how the model helps in optimizing atomistic modeling studies. It presents the orientation relationship of the interface structure to define the mutual crystallographic position of adjacent crystals. The article describes the model-informed atomistic modeling of the interface structures for interpolating the results of atomistic modeling to predict the properties of interfaces. Theories to predict low-energy orientation relationships are described. The article discusses the use of the localization parameter, such as shear modulus, bonding energy, and transformations, for prediction of interface structures. It provides information on the application of the atomistic modeling of interface structure to predict interface reaction mechanisms.
Book Chapter
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005431
EISBN: 978-1-62708-196-2
... in understanding the effect of certain parameters on the process. However, these methods do not model spatial variation directly, and the parameters do not necessarily always have direct physical significance. Typically, partial differential equations are required to describe the process in terms...
Abstract
Several methods are developed for the numerical solution of partial differential equations, namely, meshed-solution methods such as the finite-element method (FEM), finite-difference method, and boundary-element method; and numerical algorithms consisting of so-called meshed-solution methods. This article introduces the methods of so-called meshed solutions, with an emphasis on the FEM. It presents some basic differential equations that are used to model the responses of structures, components, processes, or systems with emphasis on continuum mechanics. The article provides an outline on the mathematical principles of solving differential equations. It also reviews linear structural problems to illustrate the concept of the FEMs.
Book Chapter
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006683
EISBN: 978-1-62708-213-6
... across a surface with micrometer to submicrometer spatial resolution. Cluster ion beams (e.g., Bi 3 , C 60 , Ar 5000 ) have become available that yield more signal for organic materials and even allow for depth profiling of organics. Because secondary ion intensities vary dramatically from element to...
Abstract
This article focuses on the principles and applications of high-sputter-rate dynamic secondary ion mass spectroscopy (SIMS) for depth profiling and bulk impurity analysis. It begins with an overview of various factors pertinent to sputtering. This is followed by a discussion on the effects of ion implantation and electronic excitation on the charge of the sputtered species. The design and operation of the various instrumental components of SIMS is then reviewed. Details on a depth-profiling analysis of SIMS, the quantitative analysis of SIMS data, and the static mode of operation of time-of-flight SIMS are covered. Instrumental features required for secondary ion imaging are presented and the differences between quadrupole and high-resolution magnetic mass filters are described. The article also reviews the optimum method for analysis of nonmetallic samples and high detection sensitivity of SIMS. It ends with a discussion on a variety of examples of SIMS applications.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004016
EISBN: 978-1-62708-185-6
... effects attained with different deformation techniques. For large strains when the material strengthening ability is exhausted, plastic flow becomes unstable and localized inside shear bands (SBs). Very thin shear bands first appear at the microscale, then they join into clusters observed at the...
Abstract
This article describes the mechanics and processing characteristics of equal-channel angular extrusion (ECAE). Tool design considerations for the ECAE are discussed. During ECAE, severe plastic strains and simple shear deformation mode contribute to strong, sometimes unusual effects of processing on structure and properties. The article explains these effects and concludes with a discussion on the applications of the ECAE.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006656
EISBN: 978-1-62708-213-6
.../Fourier transform infrared spectroscopy, on a point-by-point analysis. Microdiffraction also allows for analysis of materials in capillaries as well as small-volume samples/crystal clusters mounted on a glass fiber. The μXRD analysis geometry is similar to that of conventional powder diffraction...
Abstract
This article discusses various concepts of micro x-ray diffraction (XRD) used for the examination of materials in situ. The discussion covers the principles, equipment used, sample preparation procedure, considerations for calibrating a detector, steps for performing data analysis, and applications and interpretation of micro-XRD.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006287
EISBN: 978-1-62708-169-6
... treatment, so that the particles act as heterogeneous nucleation sites for the η phase. Precipitates are fine phases or clusters that form during aging of a supersaturated solid solution (see also the article “Age Hardening of Aluminum Alloys” in this Volume). In many (but not all) metals, alloying...
Abstract
This article describes the general categories and metallurgy of heat treatable aluminum alloys. It briefly reviews the key impurities and each of the principal alloying elements in aluminum alloys, namely, copper, magnesium, manganese, silicon, zinc, iron, lithium, titanium, boron, zirconium, chromium, vanadium, scandium, nickel, tin, and bismuth. The article discusses the secondary phases in aluminum alloys, namely, nonmetallic inclusions, porosity, primary particles, constituent particles, dispersoids, precipitates, grain and dislocation structure, and crystallographic texture. It also discusses the mechanisms used for strengthening aluminum alloys, including solid-solution hardening, grain-size strengthening, work or strain hardening, and precipitation hardening. The process of precipitation hardening involves solution heat treatment, quenching, and subsequent aging of the as-quenched supersaturated solid solution. The article briefly discusses these processes of precipitation hardening. It also reviews precipitation in various alloy systems, including 2xxx, 6xxx, 7xxx, aluminum-lithium, and Al-Mg-Li systems.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005413
EISBN: 978-1-62708-196-2
... , dislocation accumulation is already counteracted by recovery processes from the beginning of deformation, with continuously increasing frequency as deformation proceeds. Hardening is due to clustering of dislocations in local tangles, which are spatially d in a loose cell wall structure and, for example...
Abstract
This article focuses on the analyzing and modeling of stress-strain behavior of polycrystals of pure face-centered cubic (fcc) metals in the range of temperatures and strain rates where diffusion is not important. It presents a phenomenological description of stress-strain behavior and provides information on the physical background, alternative interpretations, and directions of research. The quantitative description of strain hardening of fcc polycrystals is provided. The article also discusses the modeling of stress-strain behavior in body-centered cubic metals, hexagonal metals, stage IV work hardening, and the various classes of single-phase alloys.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.9781627082136
EISBN: 978-1-62708-213-6
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006644
EISBN: 978-1-62708-213-6
... this technique include image doubling due to the K α doublet as well as significant loss of spatial resolution with increasing specimen-film distance. This technique often is used for initial assessment of crystals of new materials ( Ref 20 ). The transmission Berg-Barrett method ( Fig. 8b ) (also...
Abstract
X-ray topography is the general term for a family of x-ray diffraction imaging techniques capable of providing information on the nature and distribution of imperfections. This article provides a detailed account of x-ray topography techniques, providing information on the historical background and development trends in x-ray diffraction topography. The discussion covers the general principles, components of systems, and applications of x-ray topography techniques, namely conventional X-ray topographic techniques and synchrotron x-ray topographic techniques.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003836
EISBN: 978-1-62708-183-2
... course, a function of the alloy composition; therefore, some alloys are suitable for use at temperatures substantially above ambient. A variety of microstructures can be formed in partially devitrified metallic glasses, depending on the details of the metallurgical processes. Devitrification of an...
Abstract
This article illustrates the three techniques for producing glassy metals, namely, liquid phase quenching, atomic or molecular deposition, and external action technique. Devitrification of an amorphous alloy can proceed by several routes, including primary crystallization, eutectoid crystallization, and polymorphous crystallization. The article demonstrates a free-energy versus composition diagram that summarizes many of the devitrification routes. It provides a historical review of the corrosion behavior of fully amorphous and partially devitrified metallic glasses. The article describes the general corrosion behavior and localized corrosion behavior of transition metal-metal binary alloys, transition metal-metalloid alloys, and amorphous simple metal-transition metal-rare earth metal alloys. It concludes with a discussion on the environmentally induced fracture of glassy alloys, including hydrogen embrittlement and stress-corrosion cracking.