Skip Nav Destination
Close Modal
Search Results for
microstructural parameters
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1452 Search Results for
microstructural parameters
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003248
EISBN: 978-1-62708-199-3
... Abstract Quantifying microstructural parameters has received considerable attention and success in developing procedures and using such data to develop structure/property relationships has been achieved. This article reviews many of the simple stereological counting measurements of volume...
Abstract
Quantifying microstructural parameters has received considerable attention and success in developing procedures and using such data to develop structure/property relationships has been achieved. This article reviews many of the simple stereological counting measurements of volume fraction, grain structure (two-phase grain structures, and nonequiaxed grain structures), grain size, and inclusion content. It also reviews simple relationships between number of grains per unit area, number of intersections of a line of known length with particle or grain, and number of interceptions of particles or grains by a line of known length.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003742
EISBN: 978-1-62708-177-1
... information on the microstructural parameters, measurement techniques, and microstructural relationships, which assist in predicting the mechanical properties and recrystallization behavior of materials. The article concludes with an analysis of the general relationship between the microstructural parameters...
Abstract
Microstructure and crystallographic texture are the key material features used in the continuous endeavor to relate the processing of a metal with its final properties. This article emphasizes several aspects of deformation microstructures, namely, microstructural evolution, dislocation boundaries, and macroscopic properties. It discusses three different microstructural types: cell blocks, TL blocks, and equiaxed subgrains. The article also emphasizes the behavior of metals and single-phase alloys processed under plastic deformation (dislocation slip) conditions. It provides information on the microstructural parameters, measurement techniques, and microstructural relationships, which assist in predicting the mechanical properties and recrystallization behavior of materials. The article concludes with an analysis of the general relationship between the microstructural parameters and properties.
Image
Published: 12 September 2022
Fig. 8 Shape and material (microstructure/atomic arrangement) parameters that can be controlled by metal three-dimensional additive manufacturing (3D-AM)
More
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003244
EISBN: 978-1-62708-199-3
... Abstract This article describes the methods and equipments involved in the preparation of specimens for examination by light optical microscopy, scanning electron microscopy, electron microprobe analysis for microindentation hardness testing, and for quantification of microstructural parameters...
Abstract
This article describes the methods and equipments involved in the preparation of specimens for examination by light optical microscopy, scanning electron microscopy, electron microprobe analysis for microindentation hardness testing, and for quantification of microstructural parameters, either manually or by the use of image analyzers. Preparation of metallographic specimens generally requires five major operations: sectioning, mounting, grinding, chemical polishing, and etching. The article provides information on the principles of technique selection in mechanical polishing, and describes the procedures, advantages, and disadvantages of electrolytic and chemical polishing. It also provides a detailed account of procedures, precautions, and composition for preparation and handling of etchants.
Image
Published: 01 December 2009
Fig. 28 Virtual experiments showing the isolated effects of the individual microstructural parameters in α+β-processed Ti-6AI-4V
More
Image
Published: 01 December 2009
Fig. 5 Electron backscatter diffraction image of twinned zirconium. In the composite grain model, the twins are modeled explicitly within the grain, defining various microstructural parameters such as the twin thickness, orientation relationship, and so on. Source: Ref 47
More
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003759
EISBN: 978-1-62708-177-1
... , 34 , 35 ) and new techniques for characterization parameters such as microstructural spatial correlations and clustering ( 12 , 22 , 23 , 35 , 36 , 37 ), coordination number distributions ( Ref 35 ), and bivariate and trivariate size-shape-orientation distributions of particles/inclusions in 3...
Abstract
The objective of quantitative metallography/stereology is to describe the geometric characteristics of the features. This article discusses the geometric attributes of microstructural features that can be divided into: the numerical extents and the number density of microstructural features; derived microstructural properties; feature specific size, shape, and orientation distributions; and descriptors of microstructural spatial clustering and correlations. It emphasizes on the practical aspects of the measurement techniques and applications. The article also provides information on the quantitative metallographic methods for estimation of volume fraction, total surface area per unit volume, and total length of per unit volume.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002379
EISBN: 978-1-62708-193-1
... the effects of microstructure on toughness. Effects of microstructural variables on fracture toughness of steels Table 2 Effects of microstructural variables on fracture toughness of steels Microstructural parameter Effect on toughness Grain size Increase in grain size increases K Ic...
Abstract
Fracture mechanics is a multidisciplinary engineering topic that has foundations in both mechanics and materials science. This article summarizes the microstructural aspect of fracture resistance in structural materials. It provides a discussion on basic fracture principles and schematically illustrates the mechanism of crack propagation. The article describes the fracture resistance of high-strength steels, aluminum alloys, titanium alloys, and composites such as brittle matrix-ductile phase composites and metal-matrix composites. It also lists the effects of microstructural variables on fracture toughness of steels, aluminum alloys, and titanium alloys.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005133
EISBN: 978-1-62708-186-3
... ), and other parameters representing the microstructure: (Eq 2) d ε p d t = f ( σ , T , r , n , … ) During aging, the parameters representing the microstructure could be the average radius ( r ) and number density ( n ) of precipitates. These parameters evolve...
Abstract
Compared to cold-formed parts, age-formed parts have lower residual stresses and consequently better stress corrosion resistance. This article addresses the technical issues that arise in the investigations of creep in precipitate-strengthened materials. The issues addressed help in developing alloys and tempers particularly suited for the age-forming process. The different steps involved in the program for predicting the final part shape are discussed. These basic steps involve developing mechanical tests to study creep at low temperatures and low stresses, describing low-temperature creep in terms of a constitutive model, and then using the constitutive model in a process model or finite element analysis to predict the final part shape.
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006994
EISBN: 978-1-62708-439-0
... microstructure powder-bed fusion Process Optimization Fundamentals Process optimization is the discipline of adjusting a process to optimize a specified set of parameters without violating engineering constraints. The most common optimization goals are minimizing costs and maximizing throughput...
Abstract
Process optimization is the discipline of adjusting a process to optimize a specified set of parameters without violating engineering constraints. This article reviews data-driven optimization methods based on genetic algorithms and stochastic models and demonstrates their use in powder-bed fusion and directed energy deposition processes. In the latter case, closed-loop feedback is used to control melt pool temperature and cooling rate in order to achieve desired microstructure.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005599
EISBN: 978-1-62708-174-0
... Abstract This article focuses on the general internal state variable method, and its simplification, for single-parameter models, in which the microstructure evolution may be treated as an isokinetic reaction. It explains that isokinetic microstructure models are applied to diffusional...
Abstract
This article focuses on the general internal state variable method, and its simplification, for single-parameter models, in which the microstructure evolution may be treated as an isokinetic reaction. It explains that isokinetic microstructure models are applied to diffusional transformations in fusion welding, covering particle dissolution, growth, and coarsening of precipitates in the heat-affected zone. The article discusses the versatility of the internal state variable approach in modeling of nonisothermal transformations for various materials and processes. It describes the process models applied to predict the microstructure evolution in Al-Mg-Si alloys during multistage thermal processing involving heat treatment and welding. The article also provides information on the microstructure models exploited in engineering design to optimize the load-bearing capacity of welded aluminum components.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005403
EISBN: 978-1-62708-196-2
... approach for CDRX to predict microstructural evolutions occurring during hot deformation, along with an illustration of the main features of the CDRX mesoscale model. recrystallization static recrystallization dynamic recrystallization continuous dynamic recrystallization discontinuous dynamic...
Abstract
Recrystallization is to a large extent responsible for their final mechanical properties. This article commences with a discussion on static recrystallization (SRX) and dynamic recrystallization (DRX). The DRX includes continuous dynamic recrystallization (CDRX) and discontinuous dynamic recrystallization (DDRX). The article discusses the assumptions and simplifications for the Avrami analysis. It describes the effects of nucleation and growth rates on recrystallization kinetics and recrystallized grain size based on the Johnson-Mehl-Avrami-Kolmogorov model for static recrystallization. The article reviews the kinetics of DRX with the aid of the Avrami relations. It considers the basic framework of the mesoscale approach for DDRX, including the three basic equations for grain size changes, strain hardening and dynamic recovery, and nucleation. The article explains the mesoscale approach for CDRX to predict microstructural evolutions occurring during hot deformation, along with an illustration of the main features of the CDRX mesoscale model.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005589
EISBN: 978-1-62708-174-0
... Abstract Dissimilar metal welding applications require careful control over the welding parameters and corresponding dilution level in order to produce welds with proper microstructure and properties for the intended service. This article reviews the relation between the dilution and bulk...
Abstract
Dissimilar metal welding applications require careful control over the welding parameters and corresponding dilution level in order to produce welds with proper microstructure and properties for the intended service. This article reviews the relation between the dilution and bulk fusion-zone compositions and describes the effect of fusion welding parameters on dilution. It also provides typical examples of the microstructure and property control in dissimilar weld applications.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005637
EISBN: 978-1-62708-174-0
... Abstract Friction stir welding (FSW) involves plastic deformation at high strain rates and elevated temperatures with resultant microstructural changes leading to joining. This article provides a link between deformation and FSW process parameters and summarizes the results of experimental...
Abstract
Friction stir welding (FSW) involves plastic deformation at high strain rates and elevated temperatures with resultant microstructural changes leading to joining. This article provides a link between deformation and FSW process parameters and summarizes the results of experimental temperature measurements during FSW of various metals. It considers the physical explanation of the heat input during FSW and the possible methods of their estimation. The article presents the experimental results of two analytical models, supplemented by experimental/numerical flow models on material flow during FSW. The types of defects, processing parameters affecting the generation of these defects, and results of theoretical models and simulations to understand the formation and control of defects during FSW are discussed. The article concludes with information on the microstructure and its distribution produced during FSW.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001412
EISBN: 978-1-62708-173-3
... Abstract This article commences with a brief description of the solidification characteristics and microstructures of martensitic precipitation hardening (PH) stainless steels. It reviews the welding parameters for types 17-4PH, 15-5PH, PH13-8 Mo, Custom 450, and Custom 455. The article...
Abstract
This article commences with a brief description of the solidification characteristics and microstructures of martensitic precipitation hardening (PH) stainless steels. It reviews the welding parameters for types 17-4PH, 15-5PH, PH13-8 Mo, Custom 450, and Custom 455. The article describes the microstructural evolution and weld parameters associated with semiaustenitic PH steels. It discusses the weldability and welding recommendations for A-286 and JBK-75 austenitic PH stainless steels. The article also presents tables that list properties and heat treatments for the PH stainless steels.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005455
EISBN: 978-1-62708-196-2
... for the prediction of the interrelationships between microstructure and properties, and for this article, specifically tensile properties, for a wide range of materials. As noted previously, in any given metallic material, there are a number of contributing strengthening mechanisms. A computational tool would...
Abstract
A computational tool would require the contribution of the strengthening mechanisms of metallic material to be predicted and then summed in an appropriate way to derive an estimate of the tensile properties. This article focuses on the modeling of deformation mechanisms pertinent to structural materials, namely, solid-solution strengthening, age/precipitation hardening, dispersion strengthening, grain size reduction, strengthening from cold work, and strengthening from interfaces. It explains the application of predictive models in the atomistic modeling of dislocation structures and cast aluminum property prediction. The article concludes with information on the use of rules-based approaches and data-mining techniques for quantitative predictions of tensile properties.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006682
EISBN: 978-1-62708-213-6
... Abstract This article reviews many commonly used stereological counting measurements and the relationships based on these parameters. The discussion covers the processes involved in sampling and specimen preparation. Quantitative microstructural measurements are described including volume...
Abstract
This article reviews many commonly used stereological counting measurements and the relationships based on these parameters. The discussion covers the processes involved in sampling and specimen preparation. Quantitative microstructural measurements are described including volume fraction, number per unit area, intersections and intercepts per unit length, grain size, and inclusion content.
Book Chapter
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 June 2024
DOI: 10.31399/asm.hb.v12.a0007033
EISBN: 978-1-62708-387-4
... to quantify important topological features of a fracture surface, such as: Fracture profile roughness parameters Angular orientation distribution of the fracture profile Extent of overlaps in the fracture profile Correlation between fracture profile path and microstructure Fractal...
Abstract
The development of quantitative fractography (QF) parameters basically requires topological data of a fracture surface that can be derived from the stereological analysis of multiple projected scanning electron microscope (SEM) images; the profilometry-based techniques that measure the fracture surface profile along x-y sections of a fracture surface from metallographic sections or nondestructive techniques; and the three-dimensional reconstruction of the fracture surface topology using imaging methods such as stereo SEM imaging and confocal scanning laser microscopy. These three general methods of assessing fracture surface topology are reviewed in this article.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005513
EISBN: 978-1-62708-197-9
... outcome is frequently represented as a processing map, and the simulation results are superimposed on this map to predict the microstructure characteristics. In this regard, the nondimensional Rosenthal solution is used for initial modeling of microstructure. The G and R parameters are computed using...
Abstract
Additive manufacturing produces a change in the shape of a substrate by adding material progressively. This article discusses the simulation of laser deposition and three principal thermomechanical phenomena during the laser deposition process: absorption of laser radiation; heat conduction, convection, and phase change; and elastic-plastic deformation. It provides a description of four sets of data used for modeling and simulation of additive manufacturing processes, namely, material constitutive data, solid model, initial and boundary conditions, and laser deposition process parameters. The article considers three aspects of simulation of additive manufacturing: simulation for initial selection of process parameter setup, simulation for in situ process control, and simulation for ex situ process optimization. It also presents some examples of computational mechanics solutions for automating various components of additive manufacturing simulation.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006307
EISBN: 978-1-62708-179-5
... used for one-phase materials to the complex microstructure in a cast material. The suggestion is to use average material properties of the complex cast material microstructure. Evaluation of Material Parameters from the Tensile Stress-Strain Curve Simulating stress-strain behavior of a component...
Abstract
This article describes a method to predict mechanical properties of cast iron materials and illustrates how to use the predictions in computer-aided tools for the analysis of castings subjected to load. It outlines some ways to predict the hardness and elastic modulus of cast iron without going into dislocation theory. The article discusses modeling of hardness in cast iron based on a regular solution equation in which the properties of each phase depend on chemical composition and coarseness. It describes the evaluation of material parameters from the tensile stress-strain curve. The article concludes with an illustration of a finite-element method (FEM) model containing heterogeneous mechanical properties using local material definitions.
1