Skip Nav Destination
Close Modal
Search Results for
microstructural evolution models
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 495 Search Results for
microstructural evolution models
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004027
EISBN: 978-1-62708-185-6
... Abstract The systematic study of microstructural evolution during deformation under hot working conditions is important in controlling processing variables to achieve dimensional accuracy. This article explains the microstructural features that need to be modeled and provides an outline...
Abstract
The systematic study of microstructural evolution during deformation under hot working conditions is important in controlling processing variables to achieve dimensional accuracy. This article explains the microstructural features that need to be modeled and provides an outline of the principles and achievements of each of the various microstructural models, including black-box modeling, gray-box modeling, white-box modeling, and hybrid modeling.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005414
EISBN: 978-1-62708-196-2
... Abstract Computer simulation of microstructural evolution during hot rolling of steels is a major topic of research and development in academia and industry. This article describes the methodology and procedures commonly employed to develop microstructural evolution models to simulate...
Abstract
Computer simulation of microstructural evolution during hot rolling of steels is a major topic of research and development in academia and industry. This article describes the methodology and procedures commonly employed to develop microstructural evolution models to simulate microstructural evolution in steels. It presents an example of the integration of finite element modeling and microstructural evolution models for the simulation of metal flow and microstructural evolution in a hot rolling process.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005406
EISBN: 978-1-62708-196-2
... Abstract This article focuses on the intermediate length scales, where transport phenomena govern the spatial and temporal evolution of a structure. It presents the cellular automaton (CA) and phase field (PF) methods that represent the state of the art for modeling macrostructure...
Abstract
This article focuses on the intermediate length scales, where transport phenomena govern the spatial and temporal evolution of a structure. It presents the cellular automaton (CA) and phase field (PF) methods that represent the state of the art for modeling macrostructure and microstructure. The article describes the principles of the PF method and provides information on the applications of the PF method. The CA model is introduced as a computationally efficient method to predict grain structures in castings using the mesoscopic scale of individual grains. The article discusses the coupling of the CA to macroscopic calculation of heat, flow, and mass transfers in castings and applications to realistic casting conditions.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005599
EISBN: 978-1-62708-174-0
... Abstract This article focuses on the general internal state variable method, and its simplification, for single-parameter models, in which the microstructure evolution may be treated as an isokinetic reaction. It explains that isokinetic microstructure models are applied to diffusional...
Abstract
This article focuses on the general internal state variable method, and its simplification, for single-parameter models, in which the microstructure evolution may be treated as an isokinetic reaction. It explains that isokinetic microstructure models are applied to diffusional transformations in fusion welding, covering particle dissolution, growth, and coarsening of precipitates in the heat-affected zone. The article discusses the versatility of the internal state variable approach in modeling of nonisothermal transformations for various materials and processes. It describes the process models applied to predict the microstructure evolution in Al-Mg-Si alloys during multistage thermal processing involving heat treatment and welding. The article also provides information on the microstructure models exploited in engineering design to optimize the load-bearing capacity of welded aluminum components.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005511
EISBN: 978-1-62708-197-9
... with kinetic and microstructural evolution models greatly enhances the power of the CALPHAD approach in materials design and processing development. It also discusses the limitations of the CALPHAD approach. CALPHAD approach industrial applications microstructural evolution models phase diagram...
Abstract
This article focuses on the industrial applications of phase diagrams. It presents examples to illustrate how a multicomponent phase diagram calculation can be readily useful for industrial applications. The article demonstrates how the integration of a phase diagram calculation with kinetic and microstructural evolution models greatly enhances the power of the CALPHAD approach in materials design and processing development. It also discusses the limitations of the CALPHAD approach.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005459
EISBN: 978-1-62708-196-2
... Abstract This article summarizes the general features of microstructure evolution during the thermomechanical processing (TMP) of nickel-base superalloys and the challenges posed by the modeling of such phenomena. It describes the fundamentals and implementations of various modeling...
Abstract
This article summarizes the general features of microstructure evolution during the thermomechanical processing (TMP) of nickel-base superalloys and the challenges posed by the modeling of such phenomena. It describes the fundamentals and implementations of various modeling methodologies. These include JMAK (Avrami) models, topological models, and mesoscale physics-based models.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005409
EISBN: 978-1-62708-196-2
... Abstract This article focuses on the modeling of microstructure evolution during thermomechanical processing in the two-phase field for alpha/beta and beta titanium alloys. It also discusses the mechanisms of spheroidization, the coarsening, particle growth, and phase decomposition in titanium...
Abstract
This article focuses on the modeling of microstructure evolution during thermomechanical processing in the two-phase field for alpha/beta and beta titanium alloys. It also discusses the mechanisms of spheroidization, the coarsening, particle growth, and phase decomposition in titanium alloys, with their corresponding equations.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006277
EISBN: 978-1-62708-169-6
... Abstract This article describes the integration of thermodynamic modeling, mobility database, and phase-transformation crystallography into phase-field modeling and its combination with transformation texture modeling to predict phase equilibrium, phase transformation, microstructure evolution...
Abstract
This article describes the integration of thermodynamic modeling, mobility database, and phase-transformation crystallography into phase-field modeling and its combination with transformation texture modeling to predict phase equilibrium, phase transformation, microstructure evolution, and transformation texture development during heat treatment of multicomponent alpha/beta and beta titanium alloys. It includes quantitative description of Burgers orientation relationship and path, discussion of lattice correspondence between the alpha and beta phases, and determination of the total number of Burgers correspondence variants and orientation variants. The article also includes calculation of the transformation strain with contributions from defect structures developed at alpha/beta interfaces as a precipitates grow in size. In the CALculation of PHAse Diagram (CALPHAD) framework, the Gibbs free energies and atomic mobilities are established as functions of temperature, pressure, and composition and serve directly as key inputs of any microstructure modeling. The article presents examples of the integrated computation tool set in simulating microstructural evolution.
Image
Published: 01 December 2004
Fig. 1 Classification of computational models for microstructure evolution based on mathematical method and calculation outcome. Source: Ref 1
More
Image
Published: 01 December 2004
Fig. 9 Model output of microstructure evolution of eutectic spheroidal graphite iron during solidification. (a) Solidification fraction ( f s ) = 0.24. (b) f s = 0.55. (c) f s = 0.72. (d) f s = 0.99. Length of each square = 200 μm. Source: Ref 17
More
Image
in Monte Carlo Models for Grain Growth and Recrystallization
> Fundamentals of Modeling for Metals Processing
Published: 01 December 2009
Fig. 1 Potts model simulation of the microstructural evolution of a silicon steel. Grains that are part of a <110> fiber parallel to the sheet normal, within 15° of the <110> axis, are shown in light gray; <111> fiber grains are shown in white; and <100> fiber grains
More
Image
in Monte Carlo Models for Grain Growth and Recrystallization
> Fundamentals of Modeling for Metals Processing
Published: 01 December 2009
Fig. 6 Evolution of microstructure during a Potts model simulation of a two-component system in which the initial distribution of components is equal and R A = R B = 0.5. The A and B components are differentiated by the gray scale. The simulation was performed using a square (1,2
More
Image
in Monte Carlo Models for Grain Growth and Recrystallization
> Fundamentals of Modeling for Metals Processing
Published: 01 December 2009
Fig. 8 Evolution of microstructure during a Potts model simulation of a two-component system in which the initial distribution of components is unequal and the A-B boundaries have a mobility advantage: f B = 0.05, M A = M B = 1, M AB = 100. The A and B components are differentiated
More
Image
in Monte Carlo Models for Grain Growth and Recrystallization
> Fundamentals of Modeling for Metals Processing
Published: 01 December 2009
Fig. 15 Evolution of microstructure during a Potts model simulation of anisotropic grain growth of a single-texture component, using Read-Shockley energies and uniform mobilities. The simulation was performed using a square (1,2) lattice, Glauber dynamics, metropolis transition probability
More
Image
in Monte Carlo Models for Grain Growth and Recrystallization
> Fundamentals of Modeling for Metals Processing
Published: 01 December 2009
Fig. 17 Evolution of microstructure during a Potts model simulation of anisotropic grain growth of a single-texture component, using Read-Shockley energies and anisotropic mobilities to show the emergence of an abnormal grain
More
Image
in Monte Carlo Models for Grain Growth and Recrystallization
> Fundamentals of Modeling for Metals Processing
Published: 01 December 2009
Fig. 19 Evolution of microstructure during a Potts model simulation of anisotropic grain growth in a texture gradient, using Read-Shockley energies and anisotropic mobilities. The simulation was performed using a square (1,2) lattice, Glauber dynamics, metropolis transition probability
More
Image
in Simulation of Microstructural Evolution in Steels
> Fundamentals of Modeling for Metals Processing
Published: 01 December 2009
Image
in Modeling of Microstructure Evolution during the Thermomechanical Processing of Nickel-Base Superalloys
> Fundamentals of Modeling for Metals Processing
Published: 01 December 2009
Fig. 10 Model algorithm for treating the evolution of a microstructure comprising initial grains and prior recrystallized grains. Source: Ref 6
More
Image
in Modeling of Microstructure Evolution during the Thermomechanical Processing of Nickel-Base Superalloys
> Fundamentals of Modeling for Metals Processing
Published: 01 December 2009
Fig. 16 Vertex model predictions of microstructure evolution from the initial configuration (a) to the final pinned state (d) for the case of a banded distribution of particles. Source: Ref 34
More
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005427
EISBN: 978-1-62708-196-2
... required activities in several key areas, specifically: Use of advanced materials models to integrate analytical tools for simulating the casting and heat treatment processes with analysis of component durability Linking fundamental models for microstructural evolution with fundamental models...
Abstract
Integrated computational materials engineering refers to the use of computer simulations that integrate mathematical models of complex metallurgical processes with computer models used in component and process design. This article outlines an example of a computer-aided engineering tool, such as virtual aluminum castings (VAC), developed and implemented for quickly developing durable cast aluminum power train components. It describes the procedures for the model development of the VAC system. These procedures include linking the manufacturing process to microstructure, linking microstructures to mechanical properties, linking material properties to performance prediction, and model validation and integration into the engineering process. The article discusses the benefits of the VAC system in process selection, process optimization, and improving the component design criteria.
1