Skip Nav Destination
Close Modal
Search Results for
microstructural characterization
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1280
Search Results for microstructural characterization
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001300
EISBN: 978-1-62708-170-2
.... The experimental techniques for microstructural characterization include metallographic technique, X-ray diffraction, electron, microscopies, and porosimetry. coating structure electrodeposition electron microscopy metallographic technique microstructural characterization plasma spraying porosimetry...
Abstract
This article describes the structure of coatings produced by plasma spraying, vapor deposition, and electrodeposition processes. The main techniques used for microstructure assessment are introduced. The relationship between the microstructure and property is also discussed. The experimental techniques for microstructural characterization include metallographic technique, X-ray diffraction, electron, microscopies, and porosimetry.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003791
EISBN: 978-1-62708-177-1
... Abstract This article reviews how process variations influence the characteristics of thermal spray coatings. It describes various specimen preparation techniques, which allow accurate microstructural analysis. These techniques include sectioning, cleaning, mounting, planar grinding, fine...
Abstract
This article reviews how process variations influence the characteristics of thermal spray coatings. It describes various specimen preparation techniques, which allow accurate microstructural analysis. These techniques include sectioning, cleaning, mounting, planar grinding, fine grinding, rough polishing, and etching. The article provides information on the problems associated with specimen preparation. It concludes with a discussion on the various methods of analysis for thermal spray coatings.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003759
EISBN: 978-1-62708-177-1
... distribution particle shape particle size quantitative characterization quantitative metallography spatial correlations total length total surface area volume fraction IT IS THE CENTRAL PRECEPT of materials science that processing governs microstructure and the microstructure influences...
Abstract
The objective of quantitative metallography/stereology is to describe the geometric characteristics of the features. This article discusses the geometric attributes of microstructural features that can be divided into: the numerical extents and the number density of microstructural features; derived microstructural properties; feature specific size, shape, and orientation distributions; and descriptors of microstructural spatial clustering and correlations. It emphasizes on the practical aspects of the measurement techniques and applications. The article also provides information on the quantitative metallographic methods for estimation of volume fraction, total surface area per unit volume, and total length of per unit volume.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006343
EISBN: 978-1-62708-179-5
... “Metallography and Microstructures of Cast Iron” in this Volume for the color version. Source: Ref 15 Characterization of pearlite is restricted to the measurement of the pearlite lamellae interspace. Most frequently, images captured by SEM are used to measure the average distance between the pearlite...
Abstract
This article discusses the characterization of gray iron structures, following the sequence of structure formation, as it applies to unalloyed or low-alloyed gray iron. Austenite grains are the basic crystallographic entities of the metallic matrix in gray cast iron precipitated from the liquid melt. The article describes the macrostructure and dendrite morphology of primary austenite. Eutectoid transformation in the solid state causes the transformation of austenite to pearlite and/or ferrite, producing the as-cast structure. The article discusses the observations of the graphite and ferritic/pearlitic structure in as-cast gray iron.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006317
EISBN: 978-1-62708-179-5
... microstructures with nodularity. It describes the tensile properties, hardness and compressive properties, and impact properties of CGI. The article concludes with a discussion on the fatigue strength and thermal conductivity of CGI. compacted graphite iron compressive properties fatigue strength...
Abstract
According to the ISO 16112 standard for compacted graphite cast irons (CGIs), the graphite particles in CGIs shall be predominantly in the vermicular form when viewed on a two dimensional plane of polish. This article begins with a schematic illustration of compacted graphite microstructures with nodularity. It describes the tensile properties, hardness and compressive properties, and impact properties of CGI. The article concludes with a discussion on the fatigue strength and thermal conductivity of CGI.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006351
EISBN: 978-1-62708-179-5
... producing better, more consistent results. Recommended procedures to prepare cast irons and examples of high-alloy cast iron microstructures revealed using a variety of etchants are presented. Several etchants are used to reveal the matrix microstructure, depending on the alloy content. The article...
Abstract
This article describes two contemporary approaches for preparing cast iron specimens with a wide range of phases and constituents as well as different graphite morphologies. It introduces concepts and preparation materials that enable metallographers to shorten the process while producing better, more consistent results. Recommended procedures to prepare cast irons and examples of high-alloy cast iron microstructures revealed using a variety of etchants are presented. Several etchants are used to reveal the matrix microstructure, depending on the alloy content. The article discusses the use of black and white etchants and lists the compositions of abrasion-resistant cast irons according to ASTM A532/A532M in a table.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003249
EISBN: 978-1-62708-199-3
... describes the classification of materials characterization methods including, bulk elemental characterization, bulk structural characterization, microstructural characterization, and surface characterization. Further, the article reviews the selection of materials characterization methods most commonly used...
Abstract
This article provides a general introduction of materials characterization and describes the principles and applications of a limited number of techniques that are most commonly used to characterize the composition and structure of metals used in engineering systems. It briefly describes the classification of materials characterization methods including, bulk elemental characterization, bulk structural characterization, microstructural characterization, and surface characterization. Further, the article reviews the selection of materials characterization methods most commonly used with metals.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006670
EISBN: 978-1-62708-213-6
..., fabrication methods, sample preparation, bulk/elemental characterization methods, microstructural characterization methods, surface characterization methods, and electronic characterization methods. semiconductor characterization Introduction This article introduces various techniques commonly...
Abstract
This article introduces various techniques commonly used in the characterization of semiconductors, namely single-crystal, polycrystalline, amorphous, oxide, organic, and low-dimensional semiconductors and semiconductor devices. The discussion covers material classification, fabrication methods, sample preparation, bulk/elemental characterization methods, microstructural characterization methods, surface characterization methods, and electronic characterization methods.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003228
EISBN: 978-1-62708-199-3
... the merits and limitations of these techniques and describes the various uses of NDT, including leak detection, metrology, structure or microstructure characterization, stress-strain response determination, and rapid identification of metals and alloys. flaw detection identification of metals...
Abstract
This article reviews nondestructive testing (NDT) and inspection techniques, namely liquid penetrant, magnetic particle, ultrasonics, X-ray, eddy current, visual and radiography that are commonly used to detect and evaluate flaws or leaks in an engineering system. This article compares the merits and limitations of these techniques and describes the various uses of NDT, including leak detection, metrology, structure or microstructure characterization, stress-strain response determination, and rapid identification of metals and alloys.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005857
EISBN: 978-1-62708-167-2
...-destructive evaluation techniques for defect detection and microstructure characterization as well as non-destructive evaluation for real-time monitoring of induction process. case depth heat-affected zone induction hardening inspection magnetic particle inspection microstructure nondestructive...
Abstract
Inspection involves two types of testing, namely, destructive and non-destructive. This article provides an overview of the various inspection plans, such as first-article inspection and periodic tests done by destructive metallurgical testing and the final inspection done by the application of non-destructive technology. It describes the processes involved in destructive methods, such as surface hardness measurement, induction hardening pattern and heat-affected zone inspection, and the examination of microstructure before and after induction hardening. It also discusses non-destructive evaluation techniques for defect detection and microstructure characterization as well as non-destructive evaluation for real-time monitoring of induction process.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005528
EISBN: 978-1-62708-197-9
... validated finite-element models for analyzing the classes of shearing processes. The article also discusses the use of microstructural characterization with stereology to render three-dimensional volumetric parameters. It concludes with information on the numerical simulation of an edge-shearing process...
Abstract
This article discusses a set of experimental and computational studies aimed at understanding the effect of various processing parameters on the extent of burr and other defect formation during sheet edge-shearing and slitting processes. It describes the development of experimentally validated finite-element models for analyzing the classes of shearing processes. The article also discusses the use of microstructural characterization with stereology to render three-dimensional volumetric parameters. It concludes with information on the numerical simulation of an edge-shearing process, along with sensitivity studies with respect to process and tool parameters.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001343
EISBN: 978-1-62708-173-3
... penetrant inspection mechanical testing nondestructive evaluation radiography surface defects ultrasonic testing weld bead size weld characterization weld macrostructure weld microstructure WELDS CAN BE CHARACTERIZED according to a number of criteria, including the welding process used, size...
Abstract
This article describes the characterization of welds as a sequence of procedures, where each procedure is concerned with a finer scale of detail. The first level of characterization involves information that may be obtained by direct visual inspection and measurement of the weld. The article discusses nondestructive evaluation of welds by encompassing techniques that are used to characterize the locations and structure of internal and surface defects, including radiography, ultrasonic testing, and liquid penetrant inspection. It reviews the macrostructural characterization of a sectioned weld, including features such as number of passes; weld bead size, shape, and homogeneity; and the orientation of beads in a multipass weld. The article provides examples that describe how welds are characterized according to the procedures.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003252
EISBN: 978-1-62708-199-3
... Abstract Microstructural analysis is the combined characterization of the morphology, elemental composition, and crystallography of microstructural features through the use of a microscope. This article reviews three types of the most commonly used electron microscopies in metallurgical studies...
Abstract
Microstructural analysis is the combined characterization of the morphology, elemental composition, and crystallography of microstructural features through the use of a microscope. This article reviews three types of the most commonly used electron microscopies in metallurgical studies, namely scanning electron microscopy, electron probe microanalysis, and transmission electron microscopy. It briefly describes the operating principles, instrumentation which includes energy dispersive X-ray detectors, spatial resolution, typical use of the techniques, elemental analysis detection threshold and precision, limitations, sample requirements, and the capabilities of related techniques.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003741
EISBN: 978-1-62708-177-1
... show the gamma matrix as gray, the gamma prime precipitates as white, and MC carbides as black. Figure 9 , an IN-100/IN-718 diffusion couple, and Fig. 10 , a René 95/IN-718 diffusion couple, are interesting because both microstructures can be characterized by γ + γ′ + MC < γ + MC < γ > γ...
Abstract
Interdiffusion microstructures appear as a region on either side of the original interface of contact between two materials. This article outlines the principles used in analyzing various interdiffusion microstructures: binary systems, copper-base systems, nickel-base systems, and silicide-forming systems. The analysis can be helpful in classifying microstructures and in understanding how they change with alloy composition, especially when thermal history is known. The microstructures also help in identifying microstructural artifacts caused by polishing and in recognizing errors in reported heat treating schedules.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005504
EISBN: 978-1-62708-197-9
... Abstract This article reviews the characterization methods for producing 3-D microstructural data sets. The methods include serial sectioning by mechanical material removal method and focused ion beam tomography method. The article describes how these data sets are used in realistic 3-D...
Abstract
This article reviews the characterization methods for producing 3-D microstructural data sets. The methods include serial sectioning by mechanical material removal method and focused ion beam tomography method. The article describes how these data sets are used in realistic 3-D simulations of microstructural evolution during materials processing and materials response. It also explains how the 3-D experimental data are actually input and used in the simulations using phase-field modeling and finite-element modeling.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001419
EISBN: 978-1-62708-173-3
..., these alloy compositions are characterized by a wider freezing range (typically in excess of 300 °C, or 540 °F) than most aluminum alloys. Conventional I/M processing of these compositions produces equilibrium or near-equilibrium microstructures containing coarse Al 3 Fe-type primary intermetallic particles...
Abstract
Conventional high-strength aluminum alloys produced via powder metallurgy (P/M) technologies, namely, rapid solidification (RS) and mechanical alloying (mechanical attrition) have high strength at room temperature and elevated temperature. This article focuses on the metallurgy and weldability of dispersion-strengthened aluminum alloys based on the aluminum-iron system that are produced using various RS-P/M processing techniques. It describes weldability issues related to weld solidification behavior, the formation of hydrogen-induced porosity in the weld zone, and the high-temperature deformation behavior of these alloys, which affect the selection and application of fusion and solid-state welding processes. The article provides specific examples of material responses to welding conditions and highlights the microstructural development in the weld zone.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003730
EISBN: 978-1-62708-177-1
... Abstract This introductory article provides basic information on the various aspects of solid-state transformation: multiphase microstructures, substructures, and crystallography, which assist in characterizing the morphology of phase transformations. It contains a flowchart that illustrating...
Abstract
This introductory article provides basic information on the various aspects of solid-state transformation: multiphase microstructures, substructures, and crystallography, which assist in characterizing the morphology of phase transformations. It contains a flowchart that illustrating the classification of transformations by growth processes.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003797
EISBN: 978-1-62708-177-1
... magnifications in optical metallography, requiring high optical resolution at magnifications of 1500×. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and scanning Auger microscopy (SAM) are also employed depending on the need for more detailed microstructural characterization...
Abstract
This article contains tables that list standard reduction potentials for electrochemical reactions. The first table lists reactions alphabetically by element of interest. The second table is ranked by potential value. Potential is measured versus the Standard Hydrogen Electrode which has a value of 0.0000 V. Reactions with more than one voltage indicate that results have not been reconciled. Parenthetical materials not needed to balance reactions are catalysts.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003057
EISBN: 978-1-62708-200-6
... Abstract This article describes testing and characterization methods of ceramics for chemical analysis, phase analysis, microstructural analysis, macroscopic property characterization, strength and proof testing, thermophysical property testing, and nondestructive evaluation techniques...
Abstract
This article describes testing and characterization methods of ceramics for chemical analysis, phase analysis, microstructural analysis, macroscopic property characterization, strength and proof testing, thermophysical property testing, and nondestructive evaluation techniques. Chemical analysis is carried out by X-ray fluorescence spectrometry, atomic absorption spectrophotometry, and plasma-emission spectrophotometry. Phase analysis is done by X-ray diffraction, spectroscopic methods, thermal analysis, and quantitative analysis. Techniques used for microstructural analysis include reflected light microscopy using polarized light, scanning electron microscopy, transmission electron microscopy, energy dispersive analysis of X-rays, and wavelength dispersive analysis of X-rays. Macroscopic property characterization involves measurement of porosity, density, and surface area. The article describes testing methods such as room and high-temperature strength test methods, proof testing, fracture toughness measurement, and hardness and wear testing. It also explains methods for determining thermal expansion, thermal conductivity, heat capacity, and emissivity of ceramics and glass and measurement of these properties as a function of temperature.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001754
EISBN: 978-1-62708-178-8
.... Because the macro- and microstructure of metals and alloys often determine the behavior of the material, characterization of the effects of composition, processing, service conditions, and other such variables on the macro- and microstructure is frequently required. Typical structure-property...
Abstract
Optical metallography, one of the most common materials characterization techniques, uses visible light to magnify structural features of interest. This article discusses the use of optical methods to evaluate micro and macrostructure and relate it to process conditions and material behavior. It covers the steps involved in sample preparation, including sectioning, mounting, grinding, polishing, and etching, and presents several examples of macro and microanalysis on various metals and alloys.
1