Skip Nav Destination
Close Modal
Search Results for
microscale models
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 105 Search Results for
microscale models
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Image
Published: 01 January 2005
Fig. 17 Diagram of the general procedure for linking microscale modeling to the macroscale. CL, constitutive law
More
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006775
EISBN: 978-1-62708-295-2
... Abstract This article focuses on characterizing the fracture-surface appearance at the microscale and contains some discussion on both crack nucleation and propagation mechanisms that cause the fracture appearance. It begins with a discussion on microscale models and mechanisms for deformation...
Abstract
This article focuses on characterizing the fracture-surface appearance at the microscale and contains some discussion on both crack nucleation and propagation mechanisms that cause the fracture appearance. It begins with a discussion on microscale models and mechanisms for deformation and fracture. Next, the mechanisms of void nucleation and void coalescence are briefly described. Macroscale and microscale appearances of ductile and brittle fracture are then discussed for various specimen geometries (smooth cylindrical and prismatic) and loading conditions (e.g., tension compression, bending, torsion). Finally, the factors influencing the appearance of a fracture surface and various imperfections or stress raisers are described, followed by a root-cause failure analysis case history to illustrate some of these fractography concepts.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003538
EISBN: 978-1-62708-180-1
... Abstract This article provides a description of the microscale models and mechanisms for deformation and fracture. Macroscale and microscale appearances of ductile and brittle fracture are discussed for various specimen geometries and loading conditions. The article reviews the general...
Abstract
This article provides a description of the microscale models and mechanisms for deformation and fracture. Macroscale and microscale appearances of ductile and brittle fracture are discussed for various specimen geometries and loading conditions. The article reviews the general geometric factors and materials aspects that influence the stress-strain behavior and fracture of ductile metals. It highlights fractures arising from manufacturing imperfections and stress raisers. The article presents a root cause failure analysis case history to illustrate some of the fractography concepts.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005421
EISBN: 978-1-62708-196-2
... Abstract This article focuses on the modeling and simulation of cavitation phenomena. It summarizes the experimental observations of cavitation and reviews the modeling of cavity nucleation and growth. The article discusses the modeling of the cavity growth based on mesoscale and microscale...
Abstract
This article focuses on the modeling and simulation of cavitation phenomena. It summarizes the experimental observations of cavitation and reviews the modeling of cavity nucleation and growth. The article discusses the modeling of the cavity growth based on mesoscale and microscale under uniaxial versus multiaxial tensile-stress conditions. Mesoscale models incorporate the influence of local microstructure and texture on cavitation. The article outlines the descriptions of cavity coalescence and shrinkage. It also describes the simulation of the tension test to predict tensile ductility and to construct failure-mechanism maps.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006379
EISBN: 978-1-62708-192-4
... roughness, with AFM, can provide a precise picture of surface roughness and can be used as input for contact mechanics computer models. The article also describes microscale adhesion and adhesion measurement methods using microelectromechanical systems technologies. It reviews certain considerations used...
Abstract
This article first describes surface forces, and the methods of measuring them, followed by a discussion on adhesion. It discusses the instrumental requirements and techniques, including Atomic Force Microscopy (AFM), used for the measurement of surface forces. Measurements of surface roughness, with AFM, can provide a precise picture of surface roughness and can be used as input for contact mechanics computer models. The article also describes microscale adhesion and adhesion measurement methods using microelectromechanical systems technologies. It reviews certain considerations used for the measurement of adhesion, such as fundamental adhesion measurements, history dependence and sample preparation, and practical adhesion measurements. The article describes various arrangements that can be employed in adhesion tests.
Image
Published: 15 June 2020
Fig. 9 Shrinkage and compensation in vat photopolymerization (VPP)-based ceramic printing. (a) Ceramic parts before and after postprocessing. (b) Shrinkage of ceramic part fabricated by microscale VPP-based ceramic printing. (c) Final ceramic part after postprocessing. (d) Compensation
More
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003537
EISBN: 978-1-62708-180-1
... components, which is addressed in detail in Ref 1 , is not covered in this Volume. Tables 1 and 2 list some general types of macroscale and microscale fractographic features, which are described in more detail in this article. In summary form, the following are key features in distinguishing between...
Abstract
This article provides an overview of fractography and explains how it is used in failure analysis. It reviews the basic types of fracture processes, namely, ductile, brittle, fatigue, and creep, principally in terms of fracture appearances, such as microstructure. The article also describes the general features of fatigue fractures in terms of crack initiation and fatigue crack propagation.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006774
EISBN: 978-1-62708-295-2
... are increased as crystallinity increases, while ductility is usually reduced. In contrast to modeling of metallic material behavior, it is uncommon to describe behavior of polymeric material in terms of dislocation models and/or microscale slip and twinning processes. Deformation...
Abstract
Engineering component and structure failures manifest through many mechanisms but are most often associated with fracture in one or more forms. This article introduces the subject of fractography and aspects of how it is used in failure analysis. The basic types of fracture processes (ductile, brittle, fatigue, and creep) are described briefly, principally in terms of fracture appearances. A description of the surface, structure, and behavior of each fracture process is also included. The article provides a framework from which a prospective analyst can begin to study the fracture of a component of interest in a failure investigation. Details on the mechanisms of deformation, brittle transgranular fracture, intergranular fracture, fatigue fracture, and environmentally affected fracture are also provided.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005420
EISBN: 978-1-62708-196-2
... ). Attachment and removal by bubbles can be modeled by computing the attachment rates of different particle sizes to different bubble sizes and shapes in computational models of these microscale phenomena ( Ref 16 , 18 ). These attachment rates can then be incorporated into the macroscale models of fluid...
Abstract
This article focuses on the concepts involved in heat-transfer modeling, thermomechanical modeling, and microsegregation modeling of hot tearing. It discusses the modeling of solidification defects, namely, inclusion entrapment, segregation, shrinkage cavities, gas porosity, mold-wall erosion, and hot-tear cracks.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003729
EISBN: 978-1-62708-177-1
... Abstract Computational modeling assists in addressing the issues of solid/liquid interface dynamics at the microlevel. It also helps to visualize the grain length scale, fraction of phases, or even microstructure transitions through microstructure maps. This article provides a detailed account...
Abstract
Computational modeling assists in addressing the issues of solid/liquid interface dynamics at the microlevel. It also helps to visualize the grain length scale, fraction of phases, or even microstructure transitions through microstructure maps. This article provides a detailed account of the general capabilities of the various models that can generate microstructure maps and thus transform the computer into a dynamic microscope. These include standard transport models, phase-field models, Monte Carlo models, and cellular automaton models.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006314
EISBN: 978-1-62708-179-5
... models ( Ref 27 ). They couple the macroscale heat transfer ( Eq 1 ) with phenomena occurring at the grain size (microscale) level ( Eq 2 , 3 ). As already mentioned, the first multiscale solidification model was published by Oldfield ( Ref 1 ), then followed at some distance by that of Stefanescu...
Abstract
The microstructure that develops during the solidification stage of cast iron largely influences the subsequent solid-state transformations and mechanical properties of the cast components. This article provides a brief introduction of methods that can be used for simulating the solidification microstructure of cast iron. Analytical as well as numerical models describing solidification phenomena at both macroscopic and microscopic scales are presented. The article introduces macroscopic transport equations and presents analytical microscopic models for solidification. These models include the dendrite growth models and the cooperative eutectic growth models. The article provides some solutions using numerical models to simulate the kinetics of microstructure formation in cast iron. It concludes with a discussion on cellular automaton (CA) technique that can handle complex topology changes and reproduce most of the solidification microstructure features observed experimentally.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004027
EISBN: 978-1-62708-185-6
... stress and strain, for example, at the macro level ( Fig. 17 ). Fig. 17 Diagram of the general procedure for linking microscale modeling to the macroscale. CL, constitutive law However, even though “hybrid,” CAFE modeling does not exploit production data to improve the accuracy of its...
Abstract
The systematic study of microstructural evolution during deformation under hot working conditions is important in controlling processing variables to achieve dimensional accuracy. This article explains the microstructural features that need to be modeled and provides an outline of the principles and achievements of each of the various microstructural models, including black-box modeling, gray-box modeling, white-box modeling, and hybrid modeling.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006578
EISBN: 978-1-62708-290-7
... and compensation in vat photopolymerization (VPP)-based ceramic printing. (a) Ceramic parts before and after postprocessing. (b) Shrinkage of ceramic part fabricated by microscale VPP-based ceramic printing. (c) Final ceramic part after postprocessing. (d) Compensation by redesign of the build-part digital model...
Abstract
This article presents a detailed account of the processes involved in vat-photopolymerization-based fabrication of ceramics, namely bioceramics, structural ceramics, piezoelectric ceramics, optical ceramics, and polymer-derived ceramics. Information and methods of material preparation, curing characteristics, green-part fabrication, property identification, process design and planning, and quality control and optimization are introduced. The article also provides information on postprocessing techniques, namely debinding and sintering, as well as on the phenomenon of shrinkage and compensation.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005417
EISBN: 978-1-62708-196-2
... coefficient heat-transfer coefficient computer simulations oxide scales hot metal ring test thermomechanical processing KNOWLEDGE OF FRICTION AND HEAT TRANSFER is vital to the understanding and operation of metal forming. Modeling and numerical simulations are now extensively used for optimization...
Abstract
This article examines the deformation processes in metal-forming operations and considers the effects introduced by scale factors when microforming. It discusses the process parameters and variables affecting surface interactions, including temperature, speed, reduction, stiffness, and dynamic response of equipment. The article reviews the determination of friction coefficient using laboratory monitoring methods, indirect measurements, and the inverse method. It considers the determination of the interface heat-transfer coefficient by using the ring test and computer simulations. The article describes the behavior of oxide scale on the surface of hot metal undergoing thermomechanical processing. It concludes with information on the effects of process and material parameters on interfacial phenomena.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005227
EISBN: 978-1-62708-187-0
... and melt infiltration, used in the synthesis of MMCs. The article also considers the fundamentals of the process and presents a computational modeling of particle/solidification front interactions in metal-ceramic systems. The article concludes with information on nanocomposites. casting melt...
Abstract
This article discusses the solidification of a matrix alloy in cast metal matrix composites (MMCs). It begins with a discussion on the mixing techniques in reinforcement incorporation and wettability of reinforcement. It describes the solidification processes, such as stir mixing and melt infiltration, used in the synthesis of MMCs. The article also considers the fundamentals of the process and presents a computational modeling of particle/solidification front interactions in metal-ceramic systems. The article concludes with information on nanocomposites.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003395
EISBN: 978-1-62708-195-5
... the desired extensional, flexural, and torsional stiffnesses. The design at the microscale is more important than simply the orientation of the reinforcement. Failure mechanisms such as delamination, fiber microbuckling, fiber kinking, and transverse cracking all occur on the microscale and are sensitive...
Abstract
Designing composites for structural performance initially involves meeting a set of desired performance specifications at a minimum cost. This article discusses the factors that are considered in designing the manufacturing of polymeric composites. It describes the various aspects of manufacturing, forming process, and post-processing and fabrication for designing the composites.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002117
EISBN: 978-1-62708-188-7
... the mechanics of the machining process, and presents the principles of the orthogonal cutting model. The article also analyzes the effect of workpiece properties on chip formation. cutting deformation machining metal deformation orthogonal cutting model shear deformation THE BASIC MECHANISM...
Abstract
The relative motion between the tool and the workpiece during cutting compresses the work material near the tool and induces a shear deformation that forms the chip. This article discusses the fundamental nature of the deformation process associated with machining. It describes the mechanics of the machining process, and presents the principles of the orthogonal cutting model. The article also analyzes the effect of workpiece properties on chip formation.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003281
EISBN: 978-1-62708-176-4
... Abstract This article describes the techniques for measuring friction, namely, inclined-plane method; friction test methods using weights and pulleys; friction tests of shafts and capstans; other types of friction tests, including standards; microscale friction tests; and friction testing under...
Abstract
This article describes the techniques for measuring friction, namely, inclined-plane method; friction test methods using weights and pulleys; friction tests of shafts and capstans; other types of friction tests, including standards; microscale friction tests; and friction testing under well-lubricated conditions. The procedural considerations that should be addressed to ensure that valid data are derived from a friction test are discussed. The article explains friction testing geometries, the major considerations implicit in their use as well as friction test parameters, such as speed and load. It also demonstrates how to report friction data and how these data can be entered into a database.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002492
EISBN: 978-1-62708-194-8
... ). The design at the microscale is more important than the simple orientation of the reinforcement. Failure mechanisms such as delamination, fiber microbuckling, fiber kinking, and transverse cracking all occur on the microscale and are sensitive to manufacturing variations ( Ref 2 ). Just as the design...
Abstract
The goal of design is to improve the overall performance of the metal or ceramic matrix rather than to create a material with different response than the base matrix. This article focuses on the design for manufacturing polymeric composites. Specially developed methods including contact molding, compression-type molding, resin-injection molding, and pultrusion are described. The article also discusses the various factors to be considered in designing for composite manufacturing.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006307
EISBN: 978-1-62708-179-5
... without going into dislocation theory. The article discusses modeling of hardness in cast iron based on a regular solution equation in which the properties of each phase depend on chemical composition and coarseness. It describes the evaluation of material parameters from the tensile stress-strain curve...
Abstract
This article describes a method to predict mechanical properties of cast iron materials and illustrates how to use the predictions in computer-aided tools for the analysis of castings subjected to load. It outlines some ways to predict the hardness and elastic modulus of cast iron without going into dislocation theory. The article discusses modeling of hardness in cast iron based on a regular solution equation in which the properties of each phase depend on chemical composition and coarseness. It describes the evaluation of material parameters from the tensile stress-strain curve. The article concludes with an illustration of a finite-element method (FEM) model containing heterogeneous mechanical properties using local material definitions.