Skip Nav Destination
Close Modal
By
Luther M. Gammon, Robert D. Briggs, John M. Packard, Kurt W. Batson, Rodney Boyer ...
Search Results for
microetching
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 37
Search Results for microetching
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 December 2004
Fig. 5 Microetch coupon of a case-hardened steel with Knoop microindentation hardness profile. This section allows mesoscale evaluation of structure, in this case, variation of case depth.
More
Book Chapter
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003749
EISBN: 978-1-62708-177-1
... and describes several methods for film formation, namely, heat tinting, color etching, anodizing, potentiostatic etching, vapor deposition, and film deposition by sputtering. It provides information on the general procedures and precautions for etchants and reagents used in metallographic microetching...
Abstract
Metallographic contrasting methods include various electrochemical, optical, and physical etching techniques, which in turn are enhanced by the formation of a thin transparent film on the specimen surface. This article primarily discusses etching in conjunction with light microscopy and describes several methods for film formation, namely, heat tinting, color etching, anodizing, potentiostatic etching, vapor deposition, and film deposition by sputtering. It provides information on the general procedures and precautions for etchants and reagents used in metallographic microetching, macroetching, electropolishing, chemical polishing, and other similar operations.
Image
Published: 01 December 2004
Fig. 4 Macroetch coupon prepared by heating smooth ground specimen in hot acid. This shows macroscale features related to the grain flow during forging. Macroetch sections do not need to be as smooth as microetch sections.
More
Book Chapter
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003764
EISBN: 978-1-62708-177-1
..., potassium permanganate, flammable substances, sodium carbonate, sodium hydroxide, picrates, water Designation of Etchants Table 3 Designation of Etchants Name Composition Caution Application Adler Macroetchant Microetchant 25 mL distilled water 50 mL hydrochloric acid...
Abstract
This article is a comprehensive collection of tables listing: dangerous reactions of chemicals and designations of etchants; chemical-polishing solutions for irons and steels and nonferrous materials; attack-polishing solutions, macrostructure etchants for iron and steel; and major microstructure etchants for common phases and constituents in ferrous materials.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003247
EISBN: 978-1-62708-199-3
... polishing (combined polishing and etching) with 1% ferric nitrate or with ammonium hydroxide-ammonium persulfate ( Table 6 ) can be more safely done with automatic equipment than by hand. Etchants and procedures for microetching of coppers and copper alloys Table 6 Etchants and procedures...
Abstract
This article describes the metallographic technique for nonferrous metals and special-purpose alloys. These include aluminum alloys, copper and copper alloys, lead and lead alloys, magnesium alloys, nickel and nickel alloys, magnetic alloys, tin and tin alloys, titanium and titanium alloys, refractory metals and alloys, zinc and zinc alloys, and wrought heat-resisting alloys. The preparation of specimens for metallographic technique includes operations such as sectioning, mounting, grinding, polishing, and etching of nonferrous metals and alloys. The article contains tables that list the etchants for macroscopic examination and microscopic examination of nonferrous metals and special-purpose alloys.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003773
EISBN: 978-1-62708-177-1
... nitric acid (conc) 4 parts glycerol Use freshly prepared solution at 80 °C (176 °F); discard after use. For macroetching: etch several minutes, rinse in water. For microetching: etch several seconds. For best results, alternate etching with polishing. Macroetching of lead; development...
Abstract
This article describes the various specimen preparation procedures for lead, lead alloys, and sleeve bearings, including sectioning, mounting, grinding, polishing, and etching. The microscopic examination and microstructures of lead and lead alloys are discussed. The article also provides information on the microstructures of sleeve bearing materials.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001265
EISBN: 978-1-62708-170-2
...) or the neutralizer (POP). The main issue is compatibility with subsequent steps. Specifically, in the case of PWBs, this means the ability to effectively remove any residual film from the copper during the intervening rinse and microetch steps. In the case of decorative POP, the need to achieve selectivity...
Abstract
Electroless, or autocatalytic, metal plating is a nonelectrolytic method of deposition from solution that can be plated uniformly over all surfaces, regardless of size and shape. The plating's ability to plate onto nonconductors is an advantage that contributes to the choice of electroless copper in various applications. This article provides information on the bath chemistry and deposit properties of electroless copper and discusses the applications of electroless copper plating, such as printed wiring boards, decorative plating-on-plastic, electromagnetic interference shielding, and hybrid and other advanced applications. It describes two commercial processes, pretreatment and post-treatment. The article reviews the solutions used, controls and control equipment, and performance criteria of electroless copper plating. It concludes with information on the environmental and safety issues associated with electroless copper plating.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003772
EISBN: 978-1-62708-177-1
..., Table 2 . 100× Etchants and procedures for microetching of coppers and copper alloys Table 2 Etchants and procedures for microetching of coppers and copper alloys Composition (a) Procedure Copper or copper alloy 1. 20 mL NH 4 OH, 0–20 mL H 2 O, 8–20 mL 3% H 2 O 2 Immersion...
Abstract
This article describes the microstructure of copper alloys, including copper-zinc (brasses), bronzes, copper-nickel, and copper-nickel-zinc, and examines the effect of oxygen content on alloy phases observed in different product forms. The article also discusses inclusions, etchants, and the effect of composition and processing on grain structure and growth rates.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003769
EISBN: 978-1-62708-177-1
... diagram. Eutectic composition (not shown) is at 33 wt% (17 at.%) Cu. Fig. 4 Monophase structure of etched commercially pure aluminum (1 xx.x ) at 200× magnification. HF etchant (5m in Table 4 ) Reagents for chemical microetching Table 4 Reagents for chemical microetching...
Abstract
This article focuses on the metallography and microstructures of wrought and cast aluminum and aluminum alloys. It describes the role of major alloying elements and their effect on phase formation and the morphologies of constituents formed by liquid-solid and/or solid-state transformations. The article also describes specimen preparation procedures and examines the microstructure of several alloy samples.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003244
EISBN: 978-1-62708-199-3
.... A smoothly ground surface is best. For small products, a mounted and polished metallographic section will reveal most macrostructural features when standard microstructural etching solutions are used. Macroetchants tend to be rather strong in concentration compared to microetchants, so that contrast...
Abstract
This article describes the methods and equipments involved in the preparation of specimens for examination by light optical microscopy, scanning electron microscopy, electron microprobe analysis for microindentation hardness testing, and for quantification of microstructural parameters, either manually or by the use of image analyzers. Preparation of metallographic specimens generally requires five major operations: sectioning, mounting, grinding, chemical polishing, and etching. The article provides information on the principles of technique selection in mechanical polishing, and describes the procedures, advantages, and disadvantages of electrolytic and chemical polishing. It also provides a detailed account of procedures, precautions, and composition for preparation and handling of etchants.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003260
EISBN: 978-1-62708-176-4
... tensile, compression, hardness, shear, torsion, ductility, stress rupture; fracture (Charpy, Izod, etc.) and fatigue testing Metallography, including preparation, microstructure, inclusion content, grain size, hydrogen embrittlement, macroetching and microetching, depth of decarburization, and case...
Abstract
The purpose of accreditation is to evaluate and assure high-quality results from suppliers of products or services without incurring the costs associated with auditing each supplier. This article describes laboratory accreditation based on the general requirements of International Organization for Standardization/International Electrotechnical Commission (ISO/IEC) Guide 25, "General Requirements for the Competence of Calibration and Testing Laboratories." The Guide 25 is a balanced standard that addresses quality system requirements of ISO 9000 and the technical requirements needed to perform testing or calibration. The article describes an accreditation process that would enhance the international acceptance of test data for mechanical testing laboratories.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003245
EISBN: 978-1-62708-199-3
Abstract
Proper sectioning of the surface to be examined is a very important step in preparing steel specimens. The first step in preventing damage to the metallurgical structure is to minimize the amount of sectioning that is done. This article discusses the various metallographic techniques, namely mounting, grinding, polishing, and etching involved in the microstructural analysis of carbon and alloy steels, case hardening steels, cast iron, ferrous powder metallurgy alloys, wrought and cast stainless steels, tool materials, steel castings, iron-chromium-nickel heat-resistant casting alloys and different product forms of steels.
Book Chapter
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003779
EISBN: 978-1-62708-177-1
..., 10 mL HNO 3 , 82 mL H 2 O and (2) 18 g/L (2.4 oz/gal) of NH 4 HF 2 (ammonium bifluoride) in H 2 O Reveals α and β segregation (aluminum segregation) Microetchants 1–3 mL HF, 10 mL HNO 3 , 30 mL lactic acid Reveals hydrides in unalloyed titanium 1 mL HF, 30 mL HNO 3 , 30 mL lactic acid...
Abstract
This article describes the fundamentals of titanium metallographic sample preparation. Representative micrographs are presented for each class of titanium alloys, including unalloyed titanium, alpha alloys, alpha-beta alloys, and beta titanium alloys. The article provides information on the macroexamination and microexamination for these alloys. It concludes with a discussion on the several metallographic techniques developed for specific purposes, such as recrystallization studies and microstructure/fracture topography correlations.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003767
EISBN: 978-1-62708-177-1
... are used with stainless steels in the same manner as carbon, alloy, or tool steels. Etchant compositions are often more complex and more aggressive. In the study of weld macrostructures, it is quite common to polish the section and use one of the general-purpose microetchants. Macroetchants for stainless...
Abstract
This article describes metallographic preparation and examination techniques for stainless steels and maraging steels. It presents a series of micrographs demonstrating microstructural features of these alloys. Procedures used to prepare stainless steels for macroscopic and microscopic examination are similar to those used for carbon, alloy, and tool steels. Cutting and grinding must be carefully executed to minimize deformation because the austenitic grades work harden readily. The high-hardness martensitic grades that contain substantial undissolved chromium carbide are difficult to polish while fully retaining the carbides. Unlike carbon, alloy, and tool steels, etching techniques are more difficult due to the high corrosion resistance of stainless steels and the various second phases that may be encountered. The microstructures of stainless steels can be quite complex. Matrix structures vary according to the type of steel, such as ferritic, austenitic, martensitic, precipitation hardenable, or duplex.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003781
EISBN: 978-1-62708-177-1
..., but with this etchant, grain contrast is not well defined. An etchant equal to HCl for producing grain contrast has not been found for the zinc alloys containing copper. Microetching The most useful etchants for microscopic examination of zinc and zinc alloys are aqueous solutions of chromic acid (CrO 3...
Abstract
This article discusses the specimen preparation techniques for zinc and its alloys and zinc-coated specimens, namely, sectioning, mounting, grinding and polishing, and etching. It describes the characteristics of lead, cadmium, iron, copper, titanium, aluminum, magnesium, and tin, which are present in the microstructure of zinc alloys. The article also provides information on microexamination that helps to determine the dendrite arm spacing, as well as the grain size, grain boundaries, and grain counts.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003746
EISBN: 978-1-62708-177-1
... related to the grain flow during forging. Macroetch sections do not need to be as smooth as microetch sections. Mesoscale Structure Analysis Mesoscale structure analysis is a term without significant historical precedence in metallography, but is useful to help one avoid overlooking...
Abstract
This article describes the sectioning process, some general practices, common tools, and guidelines on how to select a cutting tool for a given metallographic sectioning operation. It provides a discussion on the consumable-abrasive cutting and nonconsumable-abrasive cutting methods for metallographic sectioning. Other methods, including the use of hacksaws, shears, burning torches, wire saws, and electrical discharge machining, are also reviewed. The article reviews the issues related to the specimen test location for certification work as well as process troubleshooting and component failure analysis.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003791
EISBN: 978-1-62708-177-1
... , 20–24 June 1994 ( Boston, MA ), ASM International , 1994 , p 743 – 750 12. Blann G.A. , Microetching Techniques for Revealing Thermally Sprayed Coating Microstructures , Proceedings of the Fourth National Thermal Spray Conference , 4–10 May 1991 ( Pittsburgh, PA ), ASM...
Abstract
This article reviews how process variations influence the characteristics of thermal spray coatings. It describes various specimen preparation techniques, which allow accurate microstructural analysis. These techniques include sectioning, cleaning, mounting, planar grinding, fine grinding, rough polishing, and etching. The article provides information on the problems associated with specimen preparation. It concludes with a discussion on the various methods of analysis for thermal spray coatings.
Book Chapter
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003785
EISBN: 978-1-62708-177-1
... macroetch, all alloys Copper and copper alloys 50 mL HNO 3 + 0.5 g AgNO 3 (silver nitrate) + 50 mL H 2 O A, B Immerse; general macroetch, all alloys Titanium alloys Kroll's reagent, 10–30 mL HNO 3 + 5–15 mL HF + 50 mL H 2 O B Immerse; general macro- and microetch; increase HNO 3...
Abstract
This article provides a review of metallographic procedures and techniques for analyzing the microstructure of fusion welded joints. It discusses sample preparation, the use of backing plates, and common sectioning methods. It identifies the various types of defects that can occur in arc welded metals, organizing them according to the sectioning method by which they are observed. It describes the relationship between weld bead morphology and sectioning direction and its effect on measurement error. The article examines micrographs from stainless steel, aluminum, and titanium alloy joints, highlighting important details such as solidification and solid-state transformation structures and what they reveal about the welding process. Besides arc welding, it also discusses laser and electron beam welding methods, resistance and spot welding, and the welding of dissimilar metals.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003782
EISBN: 978-1-62708-177-1
... container for immersion of the sample in the etch solution. Microetching is accomplished by using either swabbing or immersion. Table 2 shows the typical etchants used for macrostructural and microstructural examination of prepared samples. Selected etchants for macroscopic and microscopic examination...
Abstract
Zirconium, hafnium, and their alloys are reactive metals used in a variety of nuclear and chemical processing applications. This article describes various specimen preparation procedures for these materials, including sectioning, mounting, grinding, polishing, and etching. It reviews some examples of the microstructure and examination for zircaloy alloys, hafnium, zirconium, and bimetallic forms.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001227
EISBN: 978-1-62708-170-2
... removal occurred that removed metal slivers and produced a microetch suitable for plating. The ability of this bath to remove tenacious oxide coatings permitted the electroplating of nickel with good adhesion. While this cleaning could have been done by other means, the electrolytic acid system proved...
Abstract
This article focuses on the mineral and organic acid cleaning of iron and steel. It begins with a discussion on the application methods, process selection criteria, solution composition, equipment used, and control of process variables in mineral acid cleaning. The article then describes the advantages and disadvantages of organic acid cleaning. Applications, including boiler cleaning, stainless steel cleaning, and removal of iron- and copper-bearing deposits, are discussed. The article concludes with an overview of acid cleaning of nonferrous alloys.
1