Skip Nav Destination
Close Modal
Search Results for
metalworking
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 124 Search Results for
metalworking
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0005721
EISBN: 978-1-62708-199-3
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.9781627081856
EISBN: 978-1-62708-185-6
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.9781627081863
EISBN: 978-1-62708-186-3
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005333
EISBN: 978-1-62708-187-0
... their uses in the zinc. It concludes with information on applications for zinc die castings. zinc alloy casings aging aluminum chromium plating copper zinc die castings electropainting finishing iron joining machining magnesium mechanical properties metalworking microstructure...
Abstract
Die castings is the process most often used for shaping zinc alloys. This article tabulates the compositions of zinc casting alloys and comparison of typical mechanical properties of zinc casting alloys. It discusses additions of alloys to the zinc, including aluminum, magnesium, copper, and iron. The article illustrates a characteristic five-layer microstructure of zinc alloy casings. It discusses the various methods of finishing of zinc alloy die castings, including chromium plating, polishing, painting, and electropainting. The article describes the casting of inserts and their uses in the zinc. It concludes with information on applications for zinc die castings.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003971
EISBN: 978-1-62708-185-6
... Abstract Metalworking is one of the three major technologies used to fabricate metal products. This article tabulates the classification of metal forming processes. It discusses different types of metalworking equipment, including rolling mills, ring-rolling machines, and thread-rolling and...
Abstract
Metalworking is one of the three major technologies used to fabricate metal products. This article tabulates the classification of metal forming processes. It discusses different types of metalworking equipment, including rolling mills, ring-rolling machines, and thread-rolling and surface-rolling machines. The article outlines the significant characteristics of pressing-type machines: load and energy characteristics, time-related characteristics, and accuracy characteristics. It summarizes different specialized processes such as advanced roll-forming methods, equal-channel angular extrusion, incremental forging, and microforming. The article describes the thermomechanical processing of nickel- and titanium-base alloys and concludes with information on the advancements in process simulation.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003983
EISBN: 978-1-62708-185-6
... Abstract Rotary swaging is an incremental metalworking process for reducing the cross-sectional area or otherwise changing the shape of bars, tubes, or wires by repeated radial blows with two or more dies. This article discusses the applicability of swaging and metal flow during swaging. It...
Abstract
Rotary swaging is an incremental metalworking process for reducing the cross-sectional area or otherwise changing the shape of bars, tubes, or wires by repeated radial blows with two or more dies. This article discusses the applicability of swaging and metal flow during swaging. It describes the types of rotary swaging machines, auxiliary tools, and swaging dies used for rotary swaging and the procedure for determining the side clearance in swaging dies. The article presents an overview of automated swaging machines and tube swaging, with and without a mandrel. It analyzes the effect of reduction, feed rate, die taper angle, surface contaminants, lubrication, and material response on swaging operation. The article discusses the applications for which swaging is the best method for producing a given shape, and compares swaging with alternative processes. It concludes with a discussion on special applications of swagging.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004025
EISBN: 978-1-62708-185-6
... superalloys. It discusses the thermophysical properties for designing or optimizing a metalworking process: specific heat, coefficient of thermal expansion, thermal conductivity/diffusivity, and density. aluminum alloys coefficient of thermal expansion copper alloys density forging mechanical...
Abstract
The material data for forging can be divided into two categories, namely, mechanical properties and thermophysical properties. This article describes the flow characteristics of key engineering materials, such as steels, aluminum alloys, copper alloys, titanium alloys, and nickel-base superalloys. It discusses the thermophysical properties for designing or optimizing a metalworking process: specific heat, coefficient of thermal expansion, thermal conductivity/diffusivity, and density.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004020
EISBN: 978-1-62708-185-6
... Abstract The constitutive relations for metalworking include elements of behavior at ambient temperature as well as high-temperature response. This article presents equations for strain hardening and strain-rate-sensitive flow, with alternate sections on empirically determined properties...
Abstract
The constitutive relations for metalworking include elements of behavior at ambient temperature as well as high-temperature response. This article presents equations for strain hardening and strain-rate-sensitive flow, with alternate sections on empirically determined properties, followed by the models of constitutive behavior. It provides a discussion on creep mechanisms involving dislocation and diffusional flow, such as the Nabarro-Herring creep and the Coble creep. The equations for the several creep rates are also presented. Research on the mechanism of the superplastic flow in fine-grain metals has encompassed many ideas, such as the diffusional creep, dislocation creep with diffusional accommodation at grain boundaries, and concepts of grain-mantle deformation. The article concludes with information on the kinetics of superplastic deformation processes, including low stress behavior, concurrent grain growth, and high stress behavior.
Book Chapter
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004031
EISBN: 978-1-62708-185-6
... Abstract This article is a comprehensive collection of terms related to metalworking operations that produce shapes from forging, extrusion, drawing, and rolling operations. drawing extrusion forging rolling ...
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001240
EISBN: 978-1-62708-170-2
... fluids grinding grinding fluid selection grinding waste disposal safety and environmental considerations FINISHING METHODS can include a wide variety of processes such as lapping, polishing, tumbling, and loose media. However, in keeping with metalworking tradition and for the purposes of this...
Abstract
Grinding is an extremely complex process that requires the consideration of a number of elements in order to make a reasonably adroit initial selection of a fluid or fluids for a manufacturing plant. In addition, the disposal of grinding wastes must meet the minimum requirements as recommended by the federal Environmental Protection Agency (EPA) and Resource Conservation and Recovery Act (RCRA) regulations. This article explains the selection considerations of such fluids, as well as the applications and environmental issues related to the grinding processes.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005461
EISBN: 978-1-62708-196-2
... further understood that tensile stresses, or better yet, hydrostatic tension, played a strong role in fracture during metalworking processes. Pioneering work by Bridgman ( Ref 3 ) during WWII showed that deforming materials under high superimposed hydrostatic pressure dramatically enhanced their ductility...
Abstract
This article discusses physical analysis, including slab method and upper-bound method and slip-line field analysis, for calculating stress states in plastic deformation processes. It presents various validation standards and models for evaluating the criterion of fracture for use in finite-element analyses of deformation processing. The article reviews the Cockcroft-Latham criterion of fracture and its reformulated extension for analysing the fracture locus for compression. It concludes with information on fundamental fracture models.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003166
EISBN: 978-1-62708-199-3
... poured into either castings of the desired shape or ingots for subsequent metalworking. The ingots are then formed by hot working processes such as rolling, forging, or extrusion, sometimes followed by secondary warm or cold rolling or swaging. Cast or wrought uranium parts exhibit typical metallic...
Abstract
Very high density materials are used for such applications as counterweights and radiation shields. This article focuses on the metallurgy, processing, properties, fabrication, design considerations, health and safety considerations, and applications of the most commonly used very high density materials: depleted uranium and tungsten and their alloys.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0009003
EISBN: 978-1-62708-185-6
... a metal can withstand before cracking or fracture occurs. It is important, however, to allow for a more general definition in which workability is defined as the degree of deformation that can be achieved in a particular metalworking process without creating an undesirable condition. Generally, the...
Abstract
This article provides the definitions of stress and strain, and describes the relationship between stress and strain by stress-strain curves and true-stress/true-strain curves. The emphasis is on understanding the factors that determine the extent of deformation a metal can withstand before cracking or fracture occurs. The article reviews the process variables that influence the degree of workability and summarizes the mathematical relationships that describe the occurrence of room-temperature ductile fracture under workability conditions. It discusses the most common situations encountered in multiaxial stress states. The construction of a processing map based on deformation mechanisms is also discussed.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0009013
EISBN: 978-1-62708-185-6
... process, the testing must resemble the process. Table 1 highlights how different processes correspond to various types of mechanical tests. The state of stress experienced during the actual metalworking operation should be present during the test. This correlation is the most direct way of ensuring that...
Abstract
Thermomechanical are used to gain insight into the causes of problems that arise during a given thermomechanical process. This article provides examples to demonstrate how significant the parameters were selected for specific tests. It examines the types of problems that can occur during a thermomechanical process. The article provides information on the thermophysical properties, which include specific heat, coefficient of thermal expansion, thermal conductivity/diffusivity, and density. It concludes with examples that illustrate how the various considerations in testing are successfully used to solve practical thermomechanical processing problems.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003200
EISBN: 978-1-62708-199-3
... laser surface hardening include close control of the power input with modern metalworking lasers; the high power density provided by the laser, which in turn minimizes the total energy input and, thereby, dimensional distortion; and the ability of the laser to reach normally inaccessible areas on the...
Abstract
This article discusses the fundamentals and applications of localized heat treating methods: induction hardening and tempering, laser surface transformation hardening, and electron-beam heat treatment. The article provides information about equipment and describes the selection of frequency, power, duration of heating, and coil design for induction hardening. The article also discusses the scope, application, methods, and operation of flame hardening.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004021
EISBN: 978-1-62708-185-6
... hot forging METALWORKING, with its thousands of years of history, is one of the oldest and most important materials processing technologies. During the last 30 years, with the continuous improvement of computing technology and the finite element method (FEM) as well as the competition for a lower...
Abstract
This article provides a summary of the overall development of the finite element method (FEM) and its contribution to the materials forming industry. It presents an overview of FEM methodologies and applications in the order of their usage in typical manufacturing (bulk forming process) process sequence: primary materials processing, hot forging and cold forming, and product assembly. The article discusses the material fracture and dies stress analysis and presents the optimization techniques used in 2-D and 3-D preform die design.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004017
EISBN: 978-1-62708-185-6
... extent of deformation a metal can withstand before cracking or fracture occurs. It is important, however, to allow for a more general definition in which workability is defined as the degree of deformation that can be achieved in a particular metalworking process without creating an undesirable condition...
Abstract
This article focuses on the factors that determine the extent of deformation a metal can withstand before cracking or fracture occurs. It informs that workability depends on the local conditions of stress, strain, strain rate, and temperature in combination with material factors. The article discusses the common testing techniques and process variables for workability prediction. It illustrates the simple and most widely used fracture criterion proposed by Cockcroft and Latham and provides a workability analysis using the fracture limit line. The article describes various workability tests, such as the tension test, ring compression test, plane-strain compression test, bend test, indentation test, and forgeability test. It concludes with information on the role of the finite-element modeling software used in workability analysis.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003984
EISBN: 978-1-62708-185-6
... often the limiting factor. As with any process, the capabilities and the response of the material to deformation imparted by the forging machines must be considered when developing metalworking schedules. Understanding the limitations and capabilities of the equipment and applying these when...
Abstract
Radial forging is a process performed with four dies arranged in one plane that can act on a piece simultaneously. This article explains the types of radial forgings and describes the advantages and disadvantages of radial forging over open-die cogging/forging. The article discusses the parameters involved in product shape control. It also provides examples that illustrate the versatility and capabilities of the radial forge machine.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0009010
EISBN: 978-1-62708-185-6
... parameters should be selected in order to produce high-quality products. Although commercial metalworking operations cannot be analyzed in terms of a simple stress state, workpiece failures are caused by localized tensile stresses in most instances ( Ref 1 , Ref 2 , Ref 3 , Ref 4 ). In rolling of plate...
Abstract
This article discusses two types of hot-tension tests, namely, the Gleeble test and conventional isothermal hot-tension test, as well as their equipment. It summarizes the data for hot ductility, strength, and hot-tension for commercial alloys. The article presents isothermal hot-tension test data, which helps to gain information on a number of material parameters and material coefficients. It details the effect of test conditions on flow behavior. The article briefly describes the detailed interpretation of data from the isothermal hot-tension test using numerical model. It also explains the cavitation mechanism and failure modes that occur during hot-tension testing.
Book Chapter
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005431
EISBN: 978-1-62708-196-2
... Selection and Design , Vol 20, ASM Handbook , ASM International, 1997 S.-I. Oh, J. Walters, and W.-T. Wu, Finite Element Method Applications in Bulk Forming, Metalworking: Bulk Forming , Vol 14A, ASM Handbook , ASM International, 2005, p 617–639 J.W. Yoon and F. Barlat, Modeling and Simulation of...
Abstract
Several methods are developed for the numerical solution of partial differential equations, namely, meshed-solution methods such as the finite-element method (FEM), finite-difference method, and boundary-element method; and numerical algorithms consisting of so-called meshed-solution methods. This article introduces the methods of so-called meshed solutions, with an emphasis on the FEM. It presents some basic differential equations that are used to model the responses of structures, components, processes, or systems with emphasis on continuum mechanics. The article provides an outline on the mathematical principles of solving differential equations. It also reviews linear structural problems to illustrate the concept of the FEMs.