Skip Nav Destination
Close Modal
Search Results for
metals and alloys
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 3252 Search Results for
metals and alloys
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003776
EISBN: 978-1-62708-177-1
..., and copper. gold jewelry alloys intermetallic gold compounds iridium alloys metallographic preparation metallographic samples metallography microstructure platinum jewelry alloys platinum-aluminum-copper alloys platinum-base alloys precious metals ruthenium alloys shape memory alloys...
Abstract
This article explains how to prepare precious metal test samples for metallographic examination. It discusses cutting, mounting, grinding, polishing, and etching and addresses some of the challenges of working with small, relatively soft specimens. It includes dozens of example micrographs, comparing and contrasting the microstructural features of gold, platinum, iridium, palladium, and ruthenium-base alloys. It examines pure gold, intermetallic gold compounds, gold and platinum jewelry alloys, platinum-containing shape memory alloys, and alloys consisting of platinum, aluminum, and copper.
Image
Published: 01 January 1986
Fig. 1 Flow chart of inorganic solids: metals, alloys, semiconductors. Acronyms are defined in Table 10 .
More
Image
Published: 01 December 2004
Fig. 1 Very soft metals; alloys of lead and tin. (a) and (b) A near-eutectic soft solder (63% Sn, 37% Pb; hardness, 9 HV). A globular eutectic of tin phase (light) and lead phase (dark). (c) and (d) A linotype metal (4% Sn, 12% Sb, 84% Pb; hardness, 26 HV). Primary lead dendrite in a ternary
More
Book Chapter
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005445
EISBN: 978-1-62708-196-2
... Abstract This article contains a table that lists the electrical conductivity and resistivity of selected metals, alloys, and materials at ambient temperature. These include aluminum and aluminum alloys; copper and copper alloys; electrical heating alloys; instrument and control alloys; relay...
Abstract
This article contains a table that lists the electrical conductivity and resistivity of selected metals, alloys, and materials at ambient temperature. These include aluminum and aluminum alloys; copper and copper alloys; electrical heating alloys; instrument and control alloys; relay steels and alloys; thermostat metals; electrical contact materials; and magnetically soft materials.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003151
EISBN: 978-1-62708-199-3
... Abstract The refractory metals include niobium, tantalum, molybdenum, tungsten, and rhenium. They are readily degraded by oxidizing environments at moderately low temperatures. Protective coating systems have been developed, mostly for niobium alloys, to permit their use in high-temperature...
Abstract
The refractory metals include niobium, tantalum, molybdenum, tungsten, and rhenium. They are readily degraded by oxidizing environments at moderately low temperatures. Protective coating systems have been developed, mostly for niobium alloys, to permit their use in high-temperature oxidizing aerospace applications. This article discusses the properties, processing, applications, and classes of refractory metals and its alloys, namely molybdenum, tungsten, niobium, tantalum and rhenium. It also provides an outline of the coating processes used to improve their oxidation resistance.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001079
EISBN: 978-1-62708-162-7
... Abstract All refractory metals, except osmium and iridium, have the highest melting temperatures and lowest vapor pressures of all metals. This article discusses the commercial applications, and production procedures of refractory metals and alloys. These procedures include fabrication...
Abstract
All refractory metals, except osmium and iridium, have the highest melting temperatures and lowest vapor pressures of all metals. This article discusses the commercial applications, and production procedures of refractory metals and alloys. These procedures include fabrication, machining, forming, cleaning, joining, and coatings. The article also presents information on, and specifications for, the following metals and their alloys: niobium, tantalum, molybdenum, tungsten, rhenium, and refractory metal fiber-reinforced composites. It discusses the processes involved in their production, their mechanical properties, physical properties, thermal properties, electrical properties, chemical properties, applications, and corrosion resistance.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003150
EISBN: 978-1-62708-199-3
... Abstract Precious metals include gold, silver, and six platinum-group metals, namely, platinum, palladium, ruthenium, rhodium, osmium, and iridium. This article focuses on the consumption, trade practices, properties, product forms, and applications of these metals and their alloys. gold...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003171
EISBN: 978-1-62708-199-3
... Abstract Solidification is a comprehensive process of transformation of the melt of metals and alloys into a solid piece, involving formation of dendrites, segregation which involves change in composition, zone formation in final structure of the casting, and microporosity formation during...
Abstract
Solidification is a comprehensive process of transformation of the melt of metals and alloys into a solid piece, involving formation of dendrites, segregation which involves change in composition, zone formation in final structure of the casting, and microporosity formation during shrinkage. This article describes the imperfections in the solidification process including porosity, inclusions, oxide films, secondary phases, hot tears, and metal penetration. It talks about the purpose of the gating system and the risering system in the casting process.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001454
EISBN: 978-1-62708-173-3
... Abstract Copper, copper alloys, and precious metals are probably the most easily brazed metals because of their resistance to oxidation at high temperatures. This article provides a brief discussion on the metallurgy of copper, copper alloys, and precious metals and discusses the filler metals...
Abstract
Copper, copper alloys, and precious metals are probably the most easily brazed metals because of their resistance to oxidation at high temperatures. This article provides a brief discussion on the metallurgy of copper, copper alloys, and precious metals and discusses the filler metals, brazing fluxes, joint clearance and design, and different brazing processes used in brazing of copper, copper alloys, and precious metals.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003082
EISBN: 978-1-62708-199-3
... Abstract This article contains tables that present engineering data for the following metals and their alloys: aluminum, copper, iron, lead, magnesium, nickel, tin, titanium, zinc, precious metals, permanent magnet materials, pure metals, rare earth metals, and actinide metals. Data presented...
Abstract
This article contains tables that present engineering data for the following metals and their alloys: aluminum, copper, iron, lead, magnesium, nickel, tin, titanium, zinc, precious metals, permanent magnet materials, pure metals, rare earth metals, and actinide metals. Data presented include density, linear thermal expansion, thermal conductivity, electrical conductivity, resistivity, and approximate melting temperature. The tables also present approximate equivalent hardness numbers for austenitic steels, nonaustenitic steels, austenitic stainless steel sheet, wrought aluminum products, wrought copper, and cartridge brass. The article lists conversion factors classified according to the quantity/property of interest.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003829
EISBN: 978-1-62708-183-2
... “Properties of Precious Metals,” Properties and Selection: Nonferrous Alloys and Special-Purpose Materials , Volume 2, ASM Handbook , 1990. This will aid in assessing the relevance of any particular noble metal to a given application. Atomic, structural, and physical properties can also play an important...
Abstract
This article characterizes the corrosion resistance of precious metals, namely, ruthenium, rhodium, palladium, silver, osmium, iridium, platinum, and gold. It provides a discussion on the general fabricability; atomic, structural, physical, and mechanical properties; oxidation and corrosion resistance; and corrosion applications of these precious metals. The article also tabulates the corrosion rates of these precious metals in corrosive environment, namely, acids, salts, and halogens.
Book: Fractography
Series: ASM Handbook Archive
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0000624
EISBN: 978-1-62708-181-8
... Abstract This article is an atlas of fractographs that helps in understanding the causes and mechanisms of fracture of miscellaneous metals and alloys and in identifying and interpreting the morphology of fracture surfaces. The metals and alloys covered include tungsten, iridium, magnesium-base...
Abstract
This article is an atlas of fractographs that helps in understanding the causes and mechanisms of fracture of miscellaneous metals and alloys and in identifying and interpreting the morphology of fracture surfaces. The metals and alloys covered include tungsten, iridium, magnesium-base, iron-base, molybdenum-base, and tantalum-base materials. The fractographs illustrate fatigue striations, slow-bending fracture, quasi-cleavage fracture, corrosion-fatigue fracture, fatigue crack, intergranular cleavage, microvoid coalescence, tension-overload fracture, crack propagation, impact fracture, and high-cycle fatigue failure.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003777
EISBN: 978-1-62708-177-1
... on refractory metals. The article presents and analyzes several micrographs, provides etchant formulas for various materials, and discusses the unique characteristics of rhenium and its alloys. electrolytic etching etchants grinding metallographic preparation metallography microstructure molybdenum...
Abstract
This article describes various procedures used in the metallographic preparation of niobium, tantalum, molybdenum, and tungsten alloys. It provides information on sectioning, grinding, mounting, polishing, and electrolytic etching as well as alternate procedures that have been used on refractory metals. The article presents and analyzes several micrographs, provides etchant formulas for various materials, and discusses the unique characteristics of rhenium and its alloys.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003247
EISBN: 978-1-62708-199-3
... Abstract This article describes the metallographic technique for nonferrous metals and special-purpose alloys. These include aluminum alloys, copper and copper alloys, lead and lead alloys, magnesium alloys, nickel and nickel alloys, magnetic alloys, tin and tin alloys, titanium and titanium...
Abstract
This article describes the metallographic technique for nonferrous metals and special-purpose alloys. These include aluminum alloys, copper and copper alloys, lead and lead alloys, magnesium alloys, nickel and nickel alloys, magnetic alloys, tin and tin alloys, titanium and titanium alloys, refractory metals and alloys, zinc and zinc alloys, and wrought heat-resisting alloys. The preparation of specimens for metallographic technique includes operations such as sectioning, mounting, grinding, polishing, and etching of nonferrous metals and alloys. The article contains tables that list the etchants for macroscopic examination and microscopic examination of nonferrous metals and special-purpose alloys.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003184
EISBN: 978-1-62708-199-3
... Abstract This article reviews specific processing characteristics and forging-related properties of commonly forged families of metals and alloys, including carbon and alloy steels, stainless steels, heat-resistant alloys (iron, cobalt, and nickel base alloys), aluminum alloys, copper...
Abstract
This article reviews specific processing characteristics and forging-related properties of commonly forged families of metals and alloys, including carbon and alloy steels, stainless steels, heat-resistant alloys (iron, cobalt, and nickel base alloys), aluminum alloys, copper and copper alloys, magnesium alloys, and titanium alloys. It provides forging process variables such as stock preparation, heating and cooling of forgings, die lubrication, trimming, and cleaning of these metals and alloys. The article explains the effect of temperature, deformation rate, and die temperature on forgeability and describes the forging methods of these metals and alloys.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001313
EISBN: 978-1-62708-170-2
... that has restricted the applicability of the metals to low-temperature or nonoxidizing high-temperature environments. Protective coating systems have been developed, mostly for niobium alloys, to permit their use in high-temperature oxidizing aerospace applications. Refractory metals at one time were...
Abstract
This article addresses surface cleaning, finishing, and coating operations that have proven to be effective for molybdenum, tungsten, tantalum, and niobium. It describes standard procedures for abrasive blasting, molten caustic processing, acid cleaning, pickling, and solvent and electrolytic cleaning as well as mechanical grinding and finishing. The article also provides information on common plating and coating methods, including electroplating, anodizing, and oxidation-resistant coatings.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004007
EISBN: 978-1-62708-185-6
... 340 370 High tensile ( Ref 31 , 67 ) 45 374 390–470 Cast iron ( Ref 68 ) 45 198 191–249 316 stainless steel 20 … 490 High-temperature and refractory metals and alloys Beryllium ( Ref 59 , 60 , 61 , 62 , 70 ) 45 … … Beryllium ( Ref 33 ) 45 … … Beryllium (hot...
Abstract
This article begins with a general review of the effects of changes in stress state on processing of materials. It describes the fundamentals of hydrostatic extrusion and reviews the various issues and benefits associated with hydrostatic extrusion. The article discusses the hydrostatic extrusion of structural alloys, composites, brittle materials, and intermetallics or intermetallic compounds, with examples. It concludes with a discussion on the attempts made to extend the hydrostatic extrusion to higher temperatures.
Book Chapter
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005442
EISBN: 978-1-62708-196-2
... Abstract This article contains a table that lists the density of metals and alloys. It presents information on aluminum, copper, iron, lead, magnesium, nickel, tin, titanium, and zinc, an their respective alloys. Information on wrought alloys, permanent magnet materials, precious metals...
Abstract
This article contains a table that lists the density of metals and alloys. It presents information on aluminum, copper, iron, lead, magnesium, nickel, tin, titanium, and zinc, an their respective alloys. Information on wrought alloys, permanent magnet materials, precious metals, and rare earth metals is also listed.
Book Chapter
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005443
EISBN: 978-1-62708-196-2
... Abstract This article presents a table that lists the linear thermal expansion of selected metals and alloys. These include aluminum, copper, iron, lead, magnesium, nickel, tin, titanium, and zinc and their alloys. Thermal expansion is presented for specific temperature ranges. linear...
Book Chapter
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005444
EISBN: 978-1-62708-196-2
... Abstract This article contains a table that lists the thermal conductivity of selected metals and alloys near room temperature. These include aluminum and aluminum alloys; copper and copper alloys; iron and iron alloys; lead and lead alloys; magnesium and magnesium alloys; nickel and nickel...
Abstract
This article contains a table that lists the thermal conductivity of selected metals and alloys near room temperature. These include aluminum and aluminum alloys; copper and copper alloys; iron and iron alloys; lead and lead alloys; magnesium and magnesium alloys; nickel and nickel alloys; tin and tin alloys; titanium and titanium alloys; zinc and zinc alloys; and pure metals.
1