Skip Nav Destination
Close Modal
Search Results for
metallographic specimen preparation
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 376 Search Results for
metallographic specimen preparation
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006342
EISBN: 978-1-62708-179-5
... Abstract The metallographic specimen preparation process for microstructural investigations of cast iron specimens usually consists of five stages: sampling, cold or hot mounting, grinding, polishing, and etching with a suitable etchant to reveal the microstructure. This article describes...
Abstract
The metallographic specimen preparation process for microstructural investigations of cast iron specimens usually consists of five stages: sampling, cold or hot mounting, grinding, polishing, and etching with a suitable etchant to reveal the microstructure. This article describes the general preparation of metallographic specimens and the methods of macroscopic and microscopic examination. Usually, gray-scale (black-and-white) metallography is sufficient for microstructural analysis of cast irons. The article discusses the use of color metallography of gray irons and ductile irons. It also presents application examples of color metallography.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003532
EISBN: 978-1-62708-180-1
... Abstract This article provides a discussion on the metallographic techniques used for failure analysis, and on fracture examination in materials, with illustrations. It discusses various metallographic specimen preparation techniques, namely, sectioning, mounting, grinding, polishing...
Abstract
This article provides a discussion on the metallographic techniques used for failure analysis, and on fracture examination in materials, with illustrations. It discusses various metallographic specimen preparation techniques, namely, sectioning, mounting, grinding, polishing, and electrolytic polishing. The article also describes the microstructure examination of various materials, with emphasis on failure analysis, and concludes with information on the examination of replicas with light microscopy.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003765
EISBN: 978-1-62708-177-1
... Abstract This article describes the metallographic specimen preparation procedures for cast iron test samples, including mounting, grinding, polishing, and etching. It discusses the makeup and use of black-and-white and selective color etchants and where one might be preferred over the other...
Abstract
This article describes the metallographic specimen preparation procedures for cast iron test samples, including mounting, grinding, polishing, and etching. It discusses the makeup and use of black-and-white and selective color etchants and where one might be preferred over the other. The article provides information on nearly 100 micrographs, discussing the microstructure of flake graphite in gray iron, nodular graphite in ductile iron, and temper graphite in malleable iron. It also examines the matrix microstructures of gray, ductile, compacted, and malleable cast iron samples.
Image
Published: 01 October 2014
Fig. 7 Metallographically prepared specimen of treated austenitic stainless steel. The uniform and conformal nature of the case has been revealed by etching with Kane's reagent. An advantage of the gas phase treatment is the ability to treat all exposed surfaces, even deep blind holes
More
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003761
EISBN: 978-1-62708-177-1
... Abstract This article reviews various phases and constituents found in the microstructures of low-carbon and coated steels. It provides information on the criteria for selecting proper metallographic procedures. Techniques used to prepare metallographic specimens of low-carbon steels and coated...
Abstract
This article reviews various phases and constituents found in the microstructures of low-carbon and coated steels. It provides information on the criteria for selecting proper metallographic procedures. Techniques used to prepare metallographic specimens of low-carbon steels and coated steels, such as sectioning, mounting, grinding, polishing, and etching, are discussed. The article also reviews the simple and proven manual sample preparation techniques of coated steel specimens.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003746
EISBN: 978-1-62708-177-1
... analysis. consumable-abrasive cutting failure analysis metallographic sectioning nonconsumable-abrasive cutting specimen extraction SECTIONING, the removal of a conveniently sized and representative specimen from a larger piece, is the first major operation in the preparation...
Abstract
This article describes the sectioning process, some general practices, common tools, and guidelines on how to select a cutting tool for a given metallographic sectioning operation. It provides a discussion on the consumable-abrasive cutting and nonconsumable-abrasive cutting methods for metallographic sectioning. Other methods, including the use of hacksaws, shears, burning torches, wire saws, and electrical discharge machining, are also reviewed. The article reviews the issues related to the specimen test location for certification work as well as process troubleshooting and component failure analysis.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003763
EISBN: 978-1-62708-177-1
... provides information on how to reveal the various constituents using proven metallographic procedures for both macrostructural and microstructural examination. Emphasis is placed on the specimen preparation procedures such as sectioning, mounting, grinding, and polishing. The article illustrates the use...
Abstract
This article describes the microstructure and metallographic practices used for medium- to high-carbon steels as well as for low-alloy steels. It explains the microstructural constituents of plain carbon and low-alloy steels, including ferrite, pearlite, and cementite. The article provides information on how to reveal the various constituents using proven metallographic procedures for both macrostructural and microstructural examination. Emphasis is placed on the specimen preparation procedures such as sectioning, mounting, grinding, and polishing. The article illustrates the use of proven etching techniques for plain carbon and low-alloy steels.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006765
EISBN: 978-1-62708-295-2
... be performed with the scanning electron microscope (SEM) over the same magnification range as the LM, but examination with the latter is more efficient. This article describes the major operations in the preparation of metallographic specimens, namely sectioning, mounting, grinding, polishing, and etching...
Abstract
Metallographic examination is one of the most important procedures used by metallurgists in failure analysis. Typically, the light microscope (LM) is used to assess the nature of the material microstructure and its influence on the failure mechanism. Microstructural examination can be performed with the scanning electron microscope (SEM) over the same magnification range as the LM, but examination with the latter is more efficient. This article describes the major operations in the preparation of metallographic specimens, namely sectioning, mounting, grinding, polishing, and etching. The influence of microstructures on the failure of a material is discussed and examples of such work are given to illustrate the value of light microscopy. In addition, information on heat-treatment-related failures, fabrication-/machining-related failures, and service failures is provided, with examples created using light microscopy.
Book Chapter
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003748
EISBN: 978-1-62708-177-1
... discusses the mechanism, operating procedure, advantages, and limitations of chemical and electrolytic polishing of samples for metallographic preparation. It provides information on the specimen preparation, apparatus used, and safety precautions to be followed during the polishing process. The various...
Abstract
Metallographic preparation of a material involves the elimination of artifacts or scratches from fine polishing and may be achieved by methods such as attack polishing, vibratory polishing, chemical polishing, electrolytic polishing, and electromechanical polishing. This article discusses the mechanism, operating procedure, advantages, and limitations of chemical and electrolytic polishing of samples for metallographic preparation. It provides information on the specimen preparation, apparatus used, and safety precautions to be followed during the polishing process. The various groups of electrolytes used in electropolishing of several metals and alloys are reviewed. The article concludes with a discussion on local electropolishing.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006116
EISBN: 978-1-62708-175-7
... suggestions to promote and encourage the safety of those performing metallographic preparation and analysis. chemical etching drying ferrous powders grinding metallic specimens metallographic analysis metallographic preparation mounting polishing powder metallurgy sample selection sectioning...
Abstract
Metallographic analysis is primarily a collection of visual and imaging techniques that provide an insight into the background of a material or part and its behavior. Metallic specimens, both porous and pore-free, are opaque, and as a result, an optical examination must be performed on carefully prepared planar (two-dimensional) surfaces. This article discusses the preparation sequence of ferrous powders, which is normally separated into several well-defined steps: sample selection, sectioning, mounting, grinding, polishing, drying, and chemical etching and/or coating. It provides several suggestions to promote and encourage the safety of those performing metallographic preparation and analysis.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003244
EISBN: 978-1-62708-199-3
..., either manually or by the use of image analyzers. Preparation of metallographic specimens generally requires five major operations: sectioning, mounting, grinding, chemical polishing, and etching. The article provides information on the principles of technique selection in mechanical polishing...
Abstract
This article describes the methods and equipments involved in the preparation of specimens for examination by light optical microscopy, scanning electron microscopy, electron microprobe analysis for microindentation hardness testing, and for quantification of microstructural parameters, either manually or by the use of image analyzers. Preparation of metallographic specimens generally requires five major operations: sectioning, mounting, grinding, chemical polishing, and etching. The article provides information on the principles of technique selection in mechanical polishing, and describes the procedures, advantages, and disadvantages of electrolytic and chemical polishing. It also provides a detailed account of procedures, precautions, and composition for preparation and handling of etchants.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001754
EISBN: 978-1-62708-178-8
... Preparation The first step in metallographic analysis is to select a sample that is representative of the material to be evaluated. This step is critical to the success of any subsequent study. The second, equally important step is to correctly prepare a metallographic specimen. The region...
Abstract
Optical metallography, one of the most common materials characterization techniques, uses visible light to magnify structural features of interest. This article discusses the use of optical methods to evaluate micro and macrostructure and relate it to process conditions and material behavior. It covers the steps involved in sample preparation, including sectioning, mounting, grinding, polishing, and etching, and presents several examples of macro and microanalysis on various metals and alloys.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003522
EISBN: 978-1-62708-180-1
..., Auger electron spectroscopy, secondary ion mass spectroscopy, and X-ray powder diffraction. The article discusses the analysis and interpretation of base material composition and microstructures. Preparation and examination of metallographic specimens in failure analysis are also discussed. The article...
Abstract
This article focuses on the visual or macroscopic examination of damaged materials and interpretation of damage and fracture features. Analytical tools available for evaluations of corrosion and wear damage features include energy dispersive spectroscopy, electron probe microanalysis, Auger electron spectroscopy, secondary ion mass spectroscopy, and X-ray powder diffraction. The article discusses the analysis and interpretation of base material composition and microstructures. Preparation and examination of metallographic specimens in failure analysis are also discussed. The article concludes with a review of the evaluation of polymers and ceramic materials in failure analysis.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003247
EISBN: 978-1-62708-199-3
... alloys, refractory metals and alloys, zinc and zinc alloys, and wrought heat-resisting alloys. The preparation of specimens for metallographic technique includes operations such as sectioning, mounting, grinding, polishing, and etching of nonferrous metals and alloys. The article contains tables...
Abstract
This article describes the metallographic technique for nonferrous metals and special-purpose alloys. These include aluminum alloys, copper and copper alloys, lead and lead alloys, magnesium alloys, nickel and nickel alloys, magnetic alloys, tin and tin alloys, titanium and titanium alloys, refractory metals and alloys, zinc and zinc alloys, and wrought heat-resisting alloys. The preparation of specimens for metallographic technique includes operations such as sectioning, mounting, grinding, polishing, and etching of nonferrous metals and alloys. The article contains tables that list the etchants for macroscopic examination and microscopic examination of nonferrous metals and special-purpose alloys.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006351
EISBN: 978-1-62708-179-5
... Abstract This article describes two contemporary approaches for preparing cast iron specimens with a wide range of phases and constituents as well as different graphite morphologies. It introduces concepts and preparation materials that enable metallographers to shorten the process while...
Abstract
This article describes two contemporary approaches for preparing cast iron specimens with a wide range of phases and constituents as well as different graphite morphologies. It introduces concepts and preparation materials that enable metallographers to shorten the process while producing better, more consistent results. Recommended procedures to prepare cast irons and examples of high-alloy cast iron microstructures revealed using a variety of etchants are presented. Several etchants are used to reveal the matrix microstructure, depending on the alloy content. The article discusses the use of black and white etchants and lists the compositions of abrasion-resistant cast irons according to ASTM A532/A532M in a table.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006350
EISBN: 978-1-62708-179-5
... in the article “Metallography and Microstructures of Cast Iron” in this Volume. Metallographic Preparation The preparation of metallographic specimens is a sequential stepwise process where every step must be done properly. A later step cannot be relied on to remove damage from the surface that should...
Abstract
Metallographic techniques for ductile irons are similar to those for other cast irons but more difficult than for steels, because graphite retention is a challenging task. This article presents recommended procedures to prepare ductile irons. It discusses three contemporary approaches for preparing ductile cast iron specimens with a wide range of phases and constituents as well as variations in graphite morphologies. A wide variety of matrix microstructures can be obtained in ductile irons. Examples are presented using a variety of etchants. Control of the nodularity of graphite in ductile irons is critical to their performance. The article presents details concerning the characterization of the graphite nodules.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003774
EISBN: 978-1-62708-177-1
... Abstract Magnesium and its alloys are among the most difficult metals to prepare for metallographic examination. This article describes specimen preparation processes, including sectioning, mounting, grinding, and polishing. It discusses macro and microexamination techniques as well as related...
Abstract
Magnesium and its alloys are among the most difficult metals to prepare for metallographic examination. This article describes specimen preparation processes, including sectioning, mounting, grinding, and polishing. It discusses macro and microexamination techniques as well as related etching processes, including macroetching and color etching based on polarized light enhancement. The article concludes with an overview of the effects of alloying elements, including aluminum, beryllium, calcium, copper, iron, lithium, manganese, rare earth metals, silicon, silver, strontium, thorium, tin, zinc, and zirconium.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003791
EISBN: 978-1-62708-177-1
... of these coatings is possible only if specimen preparation produces a surface that clearly reveals the true microstructure. Yet, the heterogeneous or composite nature of the thermal spray deposit can make choosing the right metallographic preparation process very difficult. Comparison of similar specimens prepared...
Abstract
This article reviews how process variations influence the characteristics of thermal spray coatings. It describes various specimen preparation techniques, which allow accurate microstructural analysis. These techniques include sectioning, cleaning, mounting, planar grinding, fine grinding, rough polishing, and etching. The article provides information on the problems associated with specimen preparation. It concludes with a discussion on the various methods of analysis for thermal spray coatings.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003776
EISBN: 978-1-62708-177-1
... Abstract This article explains how to prepare precious metal test samples for metallographic examination. It discusses cutting, mounting, grinding, polishing, and etching and addresses some of the challenges of working with small, relatively soft specimens. It includes dozens of example...
Abstract
This article explains how to prepare precious metal test samples for metallographic examination. It discusses cutting, mounting, grinding, polishing, and etching and addresses some of the challenges of working with small, relatively soft specimens. It includes dozens of example micrographs, comparing and contrasting the microstructural features of gold, platinum, iridium, palladium, and ruthenium-base alloys. It examines pure gold, intermetallic gold compounds, gold and platinum jewelry alloys, platinum-containing shape memory alloys, and alloys consisting of platinum, aluminum, and copper.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003245
EISBN: 978-1-62708-199-3
... Abstract Proper sectioning of the surface to be examined is a very important step in preparing steel specimens. The first step in preventing damage to the metallurgical structure is to minimize the amount of sectioning that is done. This article discusses the various metallographic techniques...
Abstract
Proper sectioning of the surface to be examined is a very important step in preparing steel specimens. The first step in preventing damage to the metallurgical structure is to minimize the amount of sectioning that is done. This article discusses the various metallographic techniques, namely mounting, grinding, polishing, and etching involved in the microstructural analysis of carbon and alloy steels, case hardening steels, cast iron, ferrous powder metallurgy alloys, wrought and cast stainless steels, tool materials, steel castings, iron-chromium-nickel heat-resistant casting alloys and different product forms of steels.
1