Skip Nav Destination
Close Modal
Search Results for
metallographic specimen
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 106 Search Results for
metallographic specimen
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006674
EISBN: 978-1-62708-213-6
.... The two ends are smooth and parallel to one another and normal to the expansion axis. The as-sawed surface from a metallographic saw is generally sufficiently smooth, as long as the sawed ends are without burrs. The specimen is homogeneous, of uniform cross section, and free of flaws, cracks, notches...
Abstract
Thermomechanical analysis (TMA) is a thermal analysis technique in which the length of a specimen is precisely measured versus temperature and time as the specimen is subjected to controlled heating and cooling. This article discusses the various factors and processes involved in TMA. The discussion covers the general principles, equipment used, specimen preparation process, calibration conditions, data analysis steps, and examples of the applications and interpretation of TMA.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006639
EISBN: 978-1-62708-213-6
..., that the specimen be loaded into the analytical chamber such that an adequate conduction path for electrons exists. Mounted metallographic specimens cannot be analyzed due to lack of conductivity and the outgassing of the embedding matrix. To alleviate this problem, the mounting material must be a...
Abstract
This article focuses on the principles and applications of X-ray photoelectron spectroscopy (XPS) for the analysis of elemental and chemical composition. The discussion covers the nomenclature, instruments, and specimen preparation process of XPS. Some of the factors pertinent to the calibration of materials for accurate measurements using XPS are provided, along with some aspects of the accuracy in quantitative analysis by XPS. In addition, the article presents examples of how XPS data can be used to solve problems with surface interactions.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006682
EISBN: 978-1-62708-213-6
... interlaboratory round-robins conducted by a number of mill metallographers doing such work regularly ( Ref 50 ). Raters often misidentified A- and C-type inclusions, and the severity ratings for the same specimens often covered the full severity range. Manual measurement of the volume fraction of inclusions...
Abstract
This article reviews many commonly used stereological counting measurements and the relationships based on these parameters. The discussion covers the processes involved in sampling and specimen preparation. Quantitative microstructural measurements are described including volume fraction, number per unit area, intersections and intercepts per unit length, grain size, and inclusion content.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006680
EISBN: 978-1-62708-213-6
... Abstract X-ray powder diffraction (XRPD) techniques are used to characterize samples in the form of loose powders, aggregates of finely divided material or polycrystalline specimens. This article provides a detailed account of XRPD. It begins with a discussion on XRPD instrumentation and the...
Abstract
X-ray powder diffraction (XRPD) techniques are used to characterize samples in the form of loose powders, aggregates of finely divided material or polycrystalline specimens. This article provides a detailed account of XRPD. It begins with a discussion on XRPD instrumentation and the techniques used to characterize samples. The article then describes the principles, advantages, and disadvantages of various types of powder diffractometers. A section on the Rietveld method of diffraction analysis is then presented. The article discusses various methods and procedures for qualifying and quantifying phase mixtures in powder samples. It provides information on typical sensitivity and experimental limits on precision of XRPD analysis and other systematic sources of errors that affect accuracy. Some of the factors pertinent to the estimation of crystallite size and defects are also presented. The article ends with a few application examples of XRPD.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006668
EISBN: 978-1-62708-213-6
... and compositional information regarding the specimen. The SEM was invented in 1937 ( Ref 1 ) and was first commercialized in 1965 ( Ref 2 ). There have been continual improvements in SEM resolution, dependability, ease of operation, and reduction in instrument size. Scanning electron microscopes are...
Abstract
This article provides detailed information on the instrumentation and principles of the scanning electron microscope (SEM). It begins with a description of the primary components of a conventional SEM instrument. This is followed by a discussion on the advantages and disadvantages of the SEM compared with other common microscopy and microanalysis techniques. The following sections cover the critical issues regarding sample preparation, the physical principles regarding electron beam-sample interaction, and the mechanisms for many types of image contrast. The article also presents the details of SEM-based techniques and specialized SEM instruments. It ends with example applications of various SEM modes.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006684
EISBN: 978-1-62708-213-6
... microstructure of a specimen. Also, all etchants are not equal, and nital, used probably over 90% of the time by metallographers studying iron and steel specimens, is frequently not the optimal reagent for viewing the structure. Fig. 56 Microstructure of as-polished titanium diboride viewed using (a...
Abstract
The reflected light microscope is the most commonly used tool to study the microstructure of metals, composites, ceramics, minerals, and polymers. For the study of the microstructure of metals and alloys, light microscopy is employed in the reflected-light mode using either bright-field illumination, dark-field illumination, polarized light illumination, or differential interference contract, generally by the Nomarski technique. This article concentrates on how to reveal microstructure properly to enable the proper identification of the phases and constituents and, if needed, measuring the amount, size, and spacing of constituents, using the light optical microscope. The discussion covers the examination of microstructures using different illumination methods and includes a comparison between light optical images and scanning electron microscopy images of microstructure.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006660
EISBN: 978-1-62708-213-6
... diffraction crystallographic texture AUTOMATED ELECTRON BACKSCATTER DIFFRACTION (EBSD) is a technique that allows the crystallography of a sample to be determined in a suitably equipped scanning electron microscope (SEM). In brief, a prepared specimen that is flat and free from...
Abstract
The electron backscatter diffraction (EBSD) technique has proven to be very useful in the measurement of crystallographic textures, orientation relationships between phases, and both plastic and elastic strains. This article focuses on backscatter diffraction in a scanning electron microscope and describes transmission Kikuchi diffraction. It begins with a discussion on the origins of EBSD and the collection of EBSD patterns. This is followed by sections providing information on EBSD spatial resolution and system operation of EBSD. Various factors pertinent to perform an EBSD experiment are then covered. The article further describes the processes involved in sample preparation that are critical to the success or usefulness of an EBSD experiment. It also discusses the applications of EBSD to bulk samples and the development of EBSD indexing methods.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006657
EISBN: 978-1-62708-213-6
... surface reactions, deposition and sputter cleaning, and specimen fracture. The vacuum system may also be equipped with special-purpose auxiliary equipment such as a fracture attachment for in situ fracture studies, an evaporation unit for thin-film deposition, and a hot/cold stage to conduct elevated...
Abstract
This article discusses the basic principles of and chemical effects in Auger electron spectroscopy (AES), covering various factors affecting the quantitative analyses of AES. The discussion covers instrumentation and sophisticated electronics typically used in AES for data acquisition and manipulation and various limitations of AES. Various examples highlighting the capabilities of the technique are also included.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003244
EISBN: 978-1-62708-199-3
..., either manually or by the use of image analyzers. Preparation of metallographic specimens generally requires five major operations: sectioning, mounting, grinding, chemical polishing, and etching. The article provides information on the principles of technique selection in mechanical polishing, and...
Abstract
This article describes the methods and equipments involved in the preparation of specimens for examination by light optical microscopy, scanning electron microscopy, electron microprobe analysis for microindentation hardness testing, and for quantification of microstructural parameters, either manually or by the use of image analyzers. Preparation of metallographic specimens generally requires five major operations: sectioning, mounting, grinding, chemical polishing, and etching. The article provides information on the principles of technique selection in mechanical polishing, and describes the procedures, advantages, and disadvantages of electrolytic and chemical polishing. It also provides a detailed account of procedures, precautions, and composition for preparation and handling of etchants.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003247
EISBN: 978-1-62708-199-3
... alloys, refractory metals and alloys, zinc and zinc alloys, and wrought heat-resisting alloys. The preparation of specimens for metallographic technique includes operations such as sectioning, mounting, grinding, polishing, and etching of nonferrous metals and alloys. The article contains tables that...
Abstract
This article describes the metallographic technique for nonferrous metals and special-purpose alloys. These include aluminum alloys, copper and copper alloys, lead and lead alloys, magnesium alloys, nickel and nickel alloys, magnetic alloys, tin and tin alloys, titanium and titanium alloys, refractory metals and alloys, zinc and zinc alloys, and wrought heat-resisting alloys. The preparation of specimens for metallographic technique includes operations such as sectioning, mounting, grinding, polishing, and etching of nonferrous metals and alloys. The article contains tables that list the etchants for macroscopic examination and microscopic examination of nonferrous metals and special-purpose alloys.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003245
EISBN: 978-1-62708-199-3
... Abstract Proper sectioning of the surface to be examined is a very important step in preparing steel specimens. The first step in preventing damage to the metallurgical structure is to minimize the amount of sectioning that is done. This article discusses the various metallographic techniques...
Abstract
Proper sectioning of the surface to be examined is a very important step in preparing steel specimens. The first step in preventing damage to the metallurgical structure is to minimize the amount of sectioning that is done. This article discusses the various metallographic techniques, namely mounting, grinding, polishing, and etching involved in the microstructural analysis of carbon and alloy steels, case hardening steels, cast iron, ferrous powder metallurgy alloys, wrought and cast stainless steels, tool materials, steel castings, iron-chromium-nickel heat-resistant casting alloys and different product forms of steels.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003226
EISBN: 978-1-62708-199-3
... photography of fractured parts and surfaces, and describes some of the more common fractographic features revealed by light microscopy, including tensile-fracture surface marks in unnotched specimens, fatigue marks, and structural discontinuities within the metal. The article also explains how to interpret...
Abstract
Fractography is the systematic study of fractures and fracture surfaces. It is a useful tool in failure analysis and provides a means for correlating the influence of microstructure on the fracture mode of a given material. This article discusses the preservation, preparation, and photography of fractured parts and surfaces, and describes some of the more common fractographic features revealed by light microscopy, including tensile-fracture surface marks in unnotched specimens, fatigue marks, and structural discontinuities within the metal. The article also explains how to interpret fracture information contained in optical and scanning-electron microscope fractographs.
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0001835
EISBN: 978-1-62708-181-8
... subsurface (5 to 10 μm) defects and the imaging of metallographic features of unpolished samples. The advent of large scanning electron microscope specimen chambers has permitted design of devices for the in situ analysis of mechanical behavior, such as fatigue crack initiation and propagation studies...
Abstract
Scanning electron microscopy (SEM) has unique capabilities for analyzing fracture surfaces. This article discusses the basic principles and practice of SEM, with an emphasis on its applications in fractography. The topics include an introduction to SEM instrumentation, imaging and analytical capabilities, specimen preparation, and the interpretation of fracture features. SEM can be subdivided into four systems, namely, illuminating/imaging, information, display, and vacuum systems. The article also describes the major criteria and techniques of SEM specimen preparation, and the general features of ductile and brittle fracture modes.
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0001834
EISBN: 978-1-62708-181-8
... intergranular and to determine if the fracture part is specific to any phase or constituent present. Although such specimens can be examined by scanning electron microscopy (SEM), light microscopy is more efficient for such work, and certain information, such as the color or polarization response of...
Abstract
This article presents examples of the visual fracture examination that illustrate the procedure as it applies to failure analysis and quality determination. It describes the techniques and procedures for the visual and light microscopic examination of fracture surfaces with illustrations. The article also describes microscopic and macroscopic features of the different fracture mechanisms with illustrations with emphasis on visual and light microscopy examination. The types of fractures considered include ductile fractures, tensile-test fractures, brittle fractures, fatigue fractures, and high-temperature fractures.
Book Chapter
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0001836
EISBN: 978-1-62708-181-8
... fractographs with illustrations. cleaning fractograph fracture surface scanning electron microscopy specimen replication transmission electron microscopy THE APPLICATION of the transmission electron microscope to the study of fracture surfaces and related phenomena made it possible to obtain...
Abstract
The application of transmission electron microscope to the study of fracture surfaces and related phenomena has made it possible to obtain magnifications and depths of field much greater than those possible with light (optical) microscopes. This article reviews the methods for preparing single-stage, double-stage, and extraction replicas of fracture surfaces. It discusses the types of artifacts and their effects on these replicas, and provides information on shadowing of replicas. The article concludes with a comparison of the transmission electron and scanning electron fractographs with illustrations.
Book Chapter
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004018
EISBN: 978-1-62708-185-6
... commonly seen in the fcc lattice. The fcc materials mechanically twin only with considerable difficulty, because of the substantial opportunities for slip. Alternatively, hcp materials mechanically twin more easily; so easily, in fact, that sometimes mechanical polishing of a metallographic specimen can...
Abstract
Plastic deformation can occur in metals from various mechanisms, such as slip, twinning, diffusion creep, grain-boundary sliding, grain rotation, and deformation-induced phase transformations. This article emphasizes on the mechanism of slip and twinning under cold working conditions. It discusses the factors on which the structures developed during plastic deformation depend. These factors include crystal structure, amount of deformation, composition, deformation mode, and deformation temperature and rate. The article illustrates the microstructural features that appear after substantial deformation when revealed through metallographic investigation.
Book Chapter
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0000616
EISBN: 978-1-62708-181-8
... concentrations of lead. 2400× Figure 843 shows the surface of a dendritic stress-rupture fracture in a cast specimen of IN-100 nickel-base alloy that was annealed at 1175 °C (2150 °F) and loaded at 980 °C (1800 °F) to a tensile stress of 97 MPa (14 ksi). The specimen broke after 49 h of testing. Figure...
Abstract
This article is an atlas of fractographs that covers nickel-base superalloys. The fractographs display the following: hydrogen-embrittlement fracture; segment of a fractured second-stage gas-turbine wheel; gas-producer turbine rotor cast; dendritic stress-rupture fracture surface; fatigue and creep fractures; simultaneous metallographic-fractographic evaluation; and effect of thermal cycling on fatigue fracture.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001300
EISBN: 978-1-62708-170-2
... images that can be used to determine grain size, phase distribution, or porosity. This is particularly true when interfacial structures are to be examined. The importance of good specimen preparation for all structural analysis techniques cannot be overemphasized. In many cases, apparently featureless...
Abstract
This article describes the structure of coatings produced by plasma spraying, vapor deposition, and electrodeposition processes. The main techniques used for microstructure assessment are introduced. The relationship between the microstructure and property is also discussed. The experimental techniques for microstructural characterization include metallographic technique, X-ray diffraction, electron, microscopies, and porosimetry.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003988
EISBN: 978-1-62708-185-6
... 69 ). The directionality of wrought steel is illustrated in Table 4 . Table 4 Comparison of transverse and longitudinal mechanical properties of wrought steels Material Specimen orientation Ultimate tensile strength Yield strength, 0.2% offset Impact energy Fatigue endurance limit...
Abstract
Powder forging is an extension of the conventional press and sinter powder metallurgy process, which is recognized as an effective technology for producing a variety of parts to net or near-net shape. This article focuses on the material considerations, such as powder characteristics, alloy development, and inclusion assessment; and process considerations, such as process stages, tool design, and secondary operations; of ferrous alloy powder forging. The mechanical properties of powder forged materials are also reviewed. The article discusses the quality assurance tests for powder forged materials: the part dimensions and surface finish measurement, magnetic particle inspection, metallographic analysis, and nondestructive testing. It concludes with a discussion on the applications of powder forged parts with examples.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006289
EISBN: 978-1-62708-169-6
... thermocouple measurements can help to assess the uniformity of a heat treat furnace or aging oven as well as part-racking practices. Like any measurement, several factors can be sources of error. Several sources of error can be related to the geometry of the specimen, as described briefly in the following...
Abstract
Heat treatment of aluminum alloys is assessed by various quality-assurance methods that include metallographic examination, hardness measurements, mechanical property tests, corrosion-resistance tests, and electrical conductivity testing. The use of hardness measurements in the quality assurance of heat treated aluminum products is effectively used in conjunction with the measurement of surface electrical conductivity. This article provides a detailed discussion of the error sources in eddy-current conductivity measurements. It also presents useful information on the variation of electrical conductivity of alloy 2024 samples as a function of aging time at different isothermal holding temperatures.