Skip Nav Destination
Close Modal
Search Results for
metallic material
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 3346 Search Results for
metallic material
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0009216
EISBN: 978-1-62708-176-4
.... Typically, only tensile tests are routinely conducted for metallic materials, especially for quality assurance testing. The purchaser may specify that tests for other mechanical strength properties, e.g., elevated temperature tensile, shear ultimate, compressive yield, and fracture toughness, be conducted...
Abstract
Statistical analysis of mechanical property data is the most reliable method for determination of minimum design allowables. This article describes the general procedures used to determine design allowables. It provides information on the determination of a distribution form. The article presents statistical methods which help in determining design allowables. These methods include direct computation for normal distribution, direct computation for an unknown distribution, computation of derived properties, and regression analysis. The article concludes with information on low- and elevated-temperature design properties.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004205
EISBN: 978-1-62708-184-9
... and particulate materials to corrosion. The effect of metal ions from an implanted device on the human body is also discussed. The article concludes with information on the possible cancer-causing effects of metallic biomaterials. biocompatibility corrosion metallic biomaterials metal ions...
Abstract
In the field of medical device development and testing, the corrosion of metallic parts can lead to significant adverse effects on the biocompatibility of the device. This article describes the mechanisms of metal and alloy biocompatibility. It reviews the response of implant metals and particulate materials to corrosion. The effect of metal ions from an implanted device on the human body is also discussed. The article concludes with information on the possible cancer-causing effects of metallic biomaterials.
Image
Published: 30 September 2015
Fig. 6 Structure of sintered metallic friction material. (a) Iron-base clutch with copper addition. (b) Copper-base clutch with iron addition
More
Image
in Introduction and Fundamental Principles of Induction Melting
> Induction Heating and Heat Treatment
Published: 09 June 2014
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005652
EISBN: 978-1-62708-198-6
... Abstract This article discusses the mechanisms of metal and alloy biocompatibility. It provides information on early testing and experience with metals in medical device applications. The article describes the response of implant and particulate materials to severe corrosion. It provides...
Abstract
This article discusses the mechanisms of metal and alloy biocompatibility. It provides information on early testing and experience with metals in medical device applications. The article describes the response of implant and particulate materials to severe corrosion. It provides a description of metal binding and its effects on metabolic processes. Hypersensitive responses to metal ions are also reviewed. The article concludes with a discussion on the possible cancer-causing effects of metallic biomaterials.
Image
Published: 01 January 2002
Fig. 37 Ductility of metallic materials initially increases as the temperature rises above room temperature but then goes through a minimum before it rises again. See text for discussion. Source: Ref 49
More
Image
Published: 01 January 1996
Image
Published: 01 January 2005
Image
Published: 31 October 2011
Fig. 1 Bond zone pattern typical of explosion clad metals. Materials are type 304L stainless steel and carbon steel. Original magnification: 20×
More
Image
Published: 15 January 2021
Fig. 38 Ductility of metallic materials initially increases as the temperature rises above room temperature but then goes through a minimum before it rises again. TG, transgranular; IG, intergranular. See text for discussion. Source: Ref 25
More
Image
Published: 01 December 1998
Fig. 3 Bond zone pattern typical of explosion clad metals. Materials are type 304L stainless steel and medium-carbon steel. 20×
More
Image
Published: 01 January 1993
Fig. 1 Bond zone pattern typical of explosion clad metals. Materials are type 304L stainless steel and medium-carbon steel. 20×
More
Image
Published: 31 August 2017
Image
Published: 01 November 1995
Image
in Qualification of Metal Additive Manufacturing Processes
> Additive Manufacturing Design and Applications
Published: 30 June 2023
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006985
EISBN: 978-1-62708-439-0
... for fatigue strength ( Ref 54 ). Fig. 8 Stress/cycles-to-failure curves for L-PBF-processed Ti-6Al-4V tested at R = 0.1. The L-PBF data are compared with the reference data from Metallic Materials Properties Development and Standardization (MMPDS). HIP, hot isostatic pressing. Fatigue data obtained...
Abstract
Fatigue failure is a critical performance metric for additively manufactured (AM) metal parts, especially those intended for safety-critical structural applications (i.e., applications where part failure causes system failure and injury to users). This article discusses some of the common defects that occur in laser powder bed fusion (L-PBF) components, mitigation strategies, and their impact on fatigue failure. It summarizes the fatigue properties of three commonly studied structural alloys, namely aluminum alloy, titanium alloy, and nickel-base superalloy.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005656
EISBN: 978-1-62708-198-6
... implant materials orthopedic surgery plasma spray porous coatings titanium-base foams trabecular metal THE ADVENT of porous coatings for joint replacement prostheses has proven to be a remarkable innovation in the field of orthopaedics. These coatings allow for biologic fixation of implants...
Abstract
Porous coatings are used in the field of joint replacement, particularly in cementless total hip/knee arthroplasty. This article reviews the offerings and biomaterial properties in orthopedic surgery for the contemporary class of highly porous metals. It describes the traditional porous metals/coatings having an open-cell structure, high porosity, and a microstructure resembling that of the cancellous bone. The traditional porous metal/coating includes fiber-metal mesh, cobalt-chromium (CoCr) beads, cancellous-structured titanium, and plasma spray. The article discusses other porous metals/coatings that have been developed due to the limitations of traditional porous metals for numerous open-cell-structured metals, such as titanium-base foams and trabecular metals.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002356
EISBN: 978-1-62708-193-1
... Abstract This article summarizes fatigue phenomena in metallic materials. It discusses fatigue under variable-amplitude (VA) loading, with emphasis on crack growth. The article presents the prediction models of crack initiation and crack growth under VA loading. It concludes with a discussion...
Abstract
This article summarizes fatigue phenomena in metallic materials. It discusses fatigue under variable-amplitude (VA) loading, with emphasis on crack growth. The article presents the prediction models of crack initiation and crack growth under VA loading. It concludes with a discussion on the conditions associated with engineering applications of VA loading.
Image
Published: 01 January 1987
Fig. 1268 Fracture of metal-matrix composite stress-rupture specimen. Material and processing same as in Fig. 1265 and 1266 . The composite failed after 3 h at 1205 °C (2200 °F) and 103 MPa (15 ksi). Fibers failed in a brittle mode. Compare with Fig. 1267 . Murakami's reagent, 100× (D.W
More
Image
in Copper Powder Metallurgy Products
> Properties and Selection: Nonferrous Alloys and Special-Purpose Materials
Published: 01 January 1990
1