Skip Nav Destination
Close Modal
Search Results for
metallic glass
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1246 Search Results for
metallic glass
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 1990
Fig. 5 Sheet of metallic glass prepared using the planar-flow casting method. Such sheets are used to wind power-distribution transformer cores.
More
Image
Published: 01 January 1990
Fig. 13 Ashby flow map for a metallic glass showing the temperatures and stress levels (applied stress τ versus yield stress μ) that result in homogeneous/inhomogeneous flow. The strain rate is denoted by γ ˙ ; the liquidus temperature is T ℓ .
More
Image
Published: 01 December 2004
Fig. 18 As-cast Fe 80 B 18.3 P 1.7 metallic glass alloy. Complex magnetic domain structure resulting from the residual stress pattern due to rapid-solidification processing. Dark-field imaging and the Bitter powder pattern technique were used to produce this image. Reproduced with permission
More
Image
Published: 31 December 2017
Fig. 24 Micrographs illustrating effect of laser treatment on metallic glass: (a) metallic glass composite coating, (b) amorphous layer, (c) nanocrystalline + amorphous layer, (d) microcrystalline + amorphous layer, and (e) nanocrystalline + amorphous layer. Source: Ref 131
More
Image
Published: 01 December 1998
Fig. 8 Preparation of metallic glass (amorphous metal) strip. (a) Schematic of the planar-flow casting method. The arrow indicates the direction of the material flow, which is identical to the direction of the chill wheel rotation. (b) Sheet of metallic glass prepared by the planar-flow
More
Image
Published: 01 January 2005
Fig. 1 Hypothetical free-energy curves for a metallic glass alloy indicating a glass phase as well as three distinct crystalline phases. The arrows indicate hypothetical devitrification paths: (a) primary, (b) eutectoid, and (c) polymorphous. The eutectoid devitrification route could
More
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001095
EISBN: 978-1-62708-162-7
... Abstract Metallic glasses can be prepared by solidification of liquid alloys at cooling rates sufficient to suppress the nucleation and growth of competing crystalline phases. This article presents a historical survey of the study of metallic glasses and other amorphous metals and alloys...
Abstract
Metallic glasses can be prepared by solidification of liquid alloys at cooling rates sufficient to suppress the nucleation and growth of competing crystalline phases. This article presents a historical survey of the study of metallic glasses and other amorphous metals and alloys. This includes a discussion of synthesis and processing methods, structure and morphology, and a description of the electronic, magnetic, thermodynamic, chemical, and mechanical properties of metallic glasses. In addition, the article describes the development of metallic glasses as materials for technical applications.
Image
Published: 01 January 1990
Fig. 14 The plane-strain fracture toughness of two ferrous metallic glasses compared with that of two steels. The lower fracture toughness of the metallic glasses is consistent with their higher yield strength. Source: Ref 52
More
Image
Published: 01 January 1990
Fig. 16 Ferromagnetic Curie temperatures of several ferrous-group metallic glasses as a function of the total valence of the metallic component. All the alloys have fixed metalloid concentrations of 10 at.% P and 10 at.% B. Also shown are trends in the Curie temperature for related crystalline
More
Image
Published: 01 January 1990
Fig. 18 Various parts that use metallic glasses. Most prominently featured are two spools of as-cast amorphous alloy for high-frequency and antitheft applications. Also shown (right side) are four wound magnetic cores made from amorphous alloy ribbon. Several high-frequency epoxy-encapsulated
More
Image
in Thermophysical Properties of Liquids and Solidification Microstructure Characteristics—Benchmark Data Generated in Microgravity
> Metals Process Simulation
Published: 01 November 2010
Fig. 11 (a) Elastic limit and strength of bulk metallic glasses (BMGs) compared to other materials. (b) Examples of shapes obtained for the BMG Zr 41 Ti 14 Cu 12.5 Ni 10 Be 22.5 ( Ref 25 ). (c) Vertu cell phone with subframe and battery case made of thin BMG sheets with extremely high
More
Image
Published: 01 January 2005
Fig. 2 Comparison of the corrosion rates of metallic glasses and crystalline stainless steel as a function of HCl concentration at 30 °C (85 °F). No weight changes of the metallic glasses of Fe 70 Cr 10 P 13 C 7 were detected by a microbalance after immersion for 200 h. Open/closed circles
More
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003836
EISBN: 978-1-62708-183-2
... crystallization, and polymorphous crystallization. The article demonstrates a free-energy versus composition diagram that summarizes many of the devitrification routes. It provides a historical review of the corrosion behavior of fully amorphous and partially devitrified metallic glasses. The article describes...
Abstract
This article illustrates the three techniques for producing glassy metals, namely, liquid phase quenching, atomic or molecular deposition, and external action technique. Devitrification of an amorphous alloy can proceed by several routes, including primary crystallization, eutectoid crystallization, and polymorphous crystallization. The article demonstrates a free-energy versus composition diagram that summarizes many of the devitrification routes. It provides a historical review of the corrosion behavior of fully amorphous and partially devitrified metallic glasses. The article describes the general corrosion behavior and localized corrosion behavior of transition metal-metal binary alloys, transition metal-metalloid alloys, and amorphous simple metal-transition metal-rare earth metal alloys. It concludes with a discussion on the environmentally induced fracture of glassy alloys, including hydrogen embrittlement and stress-corrosion cracking.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001763
EISBN: 978-1-62708-178-8
... Abstract This article presents the experimental and theoretical aspects of small-angle scattering, and discusses specific applications used in the characterization of metals, glasses, polymers, and ceramics. The basic methods of collimating x-rays, the cause of smearing from a line source...
Abstract
This article presents the experimental and theoretical aspects of small-angle scattering, and discusses specific applications used in the characterization of metals, glasses, polymers, and ceramics. The basic methods of collimating x-rays, the cause of smearing from a line source, desmearing parameters, and the types of scattering curves are illustrated.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006421
EISBN: 978-1-62708-192-4
... design approaches such as laser patterning and dimpling. Laser-surface modification of novel materials, such as high-entropy alloys and metallic glasses, is explored. The article provides an overview of hybrid techniques involving laser as a secondary tool, as well as a discussion on the improved...
Abstract
Lasers evolved as a versatile materials processing tool due to their advantages such as rapid, reproducible processing, chemical cleanliness, ability to handle variety of materials, and suitability for automation. This article focuses on state-of-the-art laser applications to improve tribological performance of structural materials in lubricated and nonlubricated environments. It discusses the fundamentals of various laser materials interactions and reviews laser-based surface-modification strategies, including laser surface heating and melting, laser-synthesized coatings, and laser-based design approaches such as laser patterning and dimpling. Laser-surface modification of novel materials, such as high-entropy alloys and metallic glasses, is explored. The article provides an overview of hybrid techniques involving laser as a secondary tool, as well as a discussion on the improved capabilities of laser surface engineering for tribological applications by means of integrated computational process modeling.
Image
Published: 01 November 1995
Fig. 52 To determine differential expansion in a glass/metal seal, the glass expansion curve is displaced until the setting point for the conditions of cooling coincides with the metal expansion curve. The spread between these curves then indicates differential expansion, which governs
More
Image
Published: 01 January 2005
Image
Published: 01 November 1995
Fig. 41 Glass-filled phenolic applications including disk brake pistons, a metal conversion to phenolic. Courtesy of Occidental Chemical Corporation, Durez Division
More
Image
Published: 01 November 1995
Image
Published: 01 November 1995
1