1-20 of 1215 Search Results for

metallic crystals

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
Published: 01 June 2016
Fig. 1 Deformation in a metal crystal. When a crystal structure is stressed, the atomic bonds stretch or contract as shown. (a) Portion of unstrained lattice crystal. (b) Lattice deformed elastically. (c) Slip deformation. (d) Example of dislocation. Note the extra row of atoms above the slip More
Image
Published: 01 December 2008
Fig. 5 Schematic of mode of freezing in pure metals. Crystallization begins at the mold wall and advances into the casting interior on a plane solidification front. Source: Adapted from Ref 11 More
Image
Published: 01 December 1998
Fig. 4 Unit cells and atom positions for some simple metal crystals. Also listed are the space lattice and crystal system, space-group notation, and prototype for each crystal. The lattice parameters reported are for the prototype crystal. In order to show the atom arrangements more clearly More
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003084
EISBN: 978-1-62708-199-3
... information on the crystal structures and lattice parameters of allotropes of metallic elements. Bravais lattices crystal defects crystal structure metallic elements plastic flow CRYSTAL STRUCTURE, as defined broadly, is the arrangement of atoms or molecules in the solid state. Crystal...
Book Chapter

Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006292
EISBN: 978-1-62708-163-4
... parameters for some of the simple metallic crystals. A table that lists the crystal structures of various metal elements is presented. The crystal structures are described by the Pearson symbols for crystal system, space lattice, total number of atoms per unit cell, and prototype structure. The article...
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006293
EISBN: 978-1-62708-163-4
... Abstract This article presents a table of the crystal structure of allotropic forms of metallic elements in terms of the Pearson symbol, space group, and prototype of the structure. The temperatures of the phase transformations are listed in degree Celsius and the pressures are in GPa...
Book Chapter

Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0006544
EISBN: 978-1-62708-183-2
... mechanisms used to characterize structures. It illustrates the unit cells and ion positions for some simple metal crystals, arranged alphabetically according to the Pearson symbol. The space lattice and crystal system, space-group notation, and prototype for each crystal are also illustrated. corrosion...
Book Chapter

Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003722
EISBN: 978-1-62708-177-1
... of the simple metallic crystals. The article concludes with a description of some of the most significant crystal defects such as point defects, line defects, and stacking faults. atom position crystal structure lattice line defects metallic crystals Pearson symbol point defects point groups space...
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003784
EISBN: 978-1-62708-177-1
... Abstract Pure metals normally solidify into polycrystalline masses, but it is relatively easy to produce single crystals by directional solidification from the melt. This article illustrates the dislocations present in a metal crystal, which is often polygonized into sub-boundaries during grain...
Image
Published: 01 January 2005
Fig. 3(a) Schematic drawings of the unit cells and ion positions for some simple metal crystals, arranged alphabetically according to Pearson symbol. Also listed are the space lattice and crystal system, space-group notation, and prototype for each crystal. Reported lattice parameters More
Image
Published: 01 January 2005
Fig. 3(b) Schematic drawings of the unit cells and ion positions for some simple metal crystals, arranged alphabetically according to Pearson symbol. Also listed are the space lattice and crystal system, space-group notation, and prototype for each crystal. Reported lattice parameters More
Image
Published: 01 January 2005
Fig. 3(c) Schematic drawings of the unit cells and ion positions for some simple metal crystals, arranged alphabetically according to Pearson symbol. Also listed are the space lattice and crystal system, space-group notation, and prototype for each crystal. Reported lattice parameters More
Image
Published: 01 January 2005
Fig. 3(d) Schematic drawings of the unit cells and ion positions for some simple metal crystals, arranged alphabetically according to Pearson symbol. Also listed are the space lattice and crystal system, space-group notation, and prototype for each crystal. Reported lattice parameters More
Image
Published: 01 December 2004
Fig. 1 Atom positions, prototypes, structure symbols, space-group notations, and lattice parameters for some of the simple metallic crystals More
Image
Published: 01 December 2004
Fig. 1 Atom positions, prototypes, structure symbols, space-group notations, and lattice parameters for some of the simple metallic crystals More
Image
Published: 01 December 2004
Fig. 1 Atom positions, prototypes, structure symbols, space-group notations, and lattice parameters for some of the simple metallic crystals More
Image
Published: 27 April 2016
Fig. 1 Atom positions, prototypes, structure symbols, space-group notations, and lattice parameters for some of the simple metallic crystals More
Image
Published: 27 April 2016
Fig. 1 Atom positions, prototypes, structure symbols, space-group notations, and lattice parameters for some of the simple metallic crystals More
Image
Published: 27 April 2016
Fig. 1 Atom positions, prototypes, structure symbols, space-group notations, and lattice parameters for some of the simple metallic crystals More
Image
Published: 01 January 1986
Fig. 23 Bright-field image of polycrystalline aluminum showing dislocations as they often appear in metallic crystals. The dislocations appear as dark curved lines and exhibit dark contrast relative to the matrix due to the distortion of the atomic planes near the dislocations More