Skip Nav Destination
Close Modal
Search Results for
metal selection charts
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 488 Search Results for
metal selection charts
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006623
EISBN: 978-1-62708-210-5
... filler metals gas metal arc welding gas tungsten arc welding metal selection charts THE PRIMARY FACTORS commonly considered when selecting a welding filler alloy are: Ease of welding or freedom from cracking Tensile or shear strength of the weld Weld ductility Service temperature...
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006306
EISBN: 978-1-62708-179-5
... of cast irons. A chart showing different cutting materials and cutting speed ranges for selected iron-carbon alloys is also presented. Different types of cutting tool wear observed during turning are schematically illustrated. Fig. 23 Austempered ductile iron chips. Quick-stop sample of grade 2...
Abstract
Machining of cast iron involves removing metal from the cast part, usually by cutting with a power-driven machine tool. This article discusses the factors that influence machinability, the methods used to evaluate machinability of cast irons, the effects of cast iron microstructure on cutting tool life, and the importance of as-cast surface integrity on the machining variation. It presents examples of cutting tool materials selection for different cast iron grades, and describes the effects of coolants on the machining of cast irons. A chart showing different cutting materials and cutting speed ranges for selected iron-carbon alloys is also presented. Different types of cutting tool wear observed during turning are schematically illustrated.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002452
EISBN: 978-1-62708-194-8
... for their increasing use in aerospace. Metals are penalized because of their relatively high densities. Polymers, because their densities are low, are favored. The chart has application in selecting materials for light springs and energy-storage devices (Table 5c in the article “Performance Indices,” which...
Abstract
Properties of an engineering material have a characteristic range of values that are conveniently displayed on materials selection charts. This article describes the plotting of data on these charts. It discusses the features of various types of material property charts, namely, modulus-density, strength-density, fracture toughness-density, modulus-strength, specific stiffness-specific strength, fracture toughness-modulus, fracture toughness-strength, loss coefficient-modulus, thermal conductivity-thermal diffusivity, thermal expansion-thermal conductivity, thermal expansion-modulus, and normalized strength-thermal expansion charts. The article examines the use of material property charts in presenting information in a compact and easily accessible manner.
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006691
EISBN: 978-1-62708-210-5
... surface area be anodic to the weld metal. Alloy 4043 also is a suitable filler for welding common wrought and cast alloys for sustained elevated-temperature service ( Table 4 ). See also “Aluminum Filler Metal Selection Charts” in the Reference Information division of this Volume. Electrode potential...
Abstract
The aluminum alloy 4043 is recommended as a filler metal when resistance to salt water corrosion is required, especially when welding such aluminum alloys as 5052, 6061, and 6063. This datasheet provides information on key alloy metallurgy, and processing effects on tensile properties of this 4xxx series alloy.
Image
Published: 01 December 1998
Fig. 4 Furnace size versus frequency for coreless induction melting of ferrous alloys. Frequency versus furnace size selections made along the centerline (and surrounding dark shaded area of chart) represent extremely successful melting applications. In the adjacent white zone areas, caution
More
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005152
EISBN: 978-1-62708-186-3
... metal thicknesses on the formed stamping means that random stampings can be selected for evaluation after production. SDC Level 1: Control Charting Standard control-charting procedures are used. A typical application would require the removal of five stampings in sequence at the end of the press...
Abstract
Statistics are extremely important tools in the operation of press shops, providing numerical process analysis capabilities. The most common use of statistics in the press shop is statistical process control (SPC) that uses statistical techniques such as control charts to analyze a process or its output to enable appropriate actions to be taken to achieve and maintain a state of statistical control. This article discusses the role of statistics in sheet metal forming operations, both in terms of SPC techniques, such as control charting, statistical deformation control, and experimental design, including single-variable studies, multivariable studies, and Taguchi experiments.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002453
EISBN: 978-1-62708-194-8
..., and selection charts to select materials. beam material property charts material selection performance indices ANY ENGINEERING COMPONENT has one or more functions: to carry bending moments, to contain a pressure, to transmit heat, and so forth. In designing the component, the designer has...
Abstract
This article defines performance indices in a formal way and specifies how they are derived. The performance indices for a light, strong tie and a light, stiff beam are presented. The article presents two case studies that illustrate the use of material indices, shape factors, and selection charts to select materials.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001726
EISBN: 978-1-62708-178-8
... for all the elements of interest; therefore, one of these would be a logical choice. Another method for selecting analytical methods is by use of the flow charts in Fig. 1 , 2 , 3 , 4 , 5 , 6 , 7 , and 8 . Again, a separate chart for each of the different classes of materials has been...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003223
EISBN: 978-1-62708-199-3
... when selecting a manufacturing process. For example, the scrap value of turnings is low; that of punchings is high. The resale value of alternative metals/alloys for any particular process should also be considered. Once these values have been optimized, the value of the recycled scrap should...
Abstract
Product design greatly influences the recycling and reuse of manufacturing materials. This article presents a design for recycling strategy based on ease of disassembly, minimizing process scrap, using readily recyclable materials, and labelling or otherwise identifying parts. It also discusses the concept of life-cycle analysis (LCA), a quantitative accounting of the environmental and economic costs of using a given material and the energy required to make, distribute, operate, and eventually dispose of the host product and its constituent materials. An important but often overlooked step in the LCA process is to identify potential improvement pathways.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003194
EISBN: 978-1-62708-199-3
... Abstract This article is a comprehensive collection of summary charts that provide data and information that are helpful in considering and selecting applicable processes alternative to the conventional material-removal processes. Process summary charts are provided for electrochemical...
Abstract
This article is a comprehensive collection of summary charts that provide data and information that are helpful in considering and selecting applicable processes alternative to the conventional material-removal processes. Process summary charts are provided for electrochemical machining, electrical discharge machining, chemical machining, abrasive jet machining, laser beam machining, electron beam machining, ultrasonic impact grinding, hydrodynamic machining, thermochemical machining, abrasive flow machining, and electrical discharge wire cutting.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003519
EISBN: 978-1-62708-180-1
..., and create a Corrective Action Assessment (CAA) chart. Step 8: Select Optimal Corrective Action(s) Now it is time to select the optimal corrective action(s). This is step 4 from the “Four-Step Problem-Solving Process,” “What is the best solution?” This step is a repeat of step 5, “Converge on the most...
Abstract
This article reviews the most common reasons for failures and the purpose of a failure investigation. It discusses the nine steps for the organization of a good failure investigation. The three basic tools that are helpful in any failure investigation, namely, a fault tree, a failure mode assessment chart, and a technical plan for resolution chart, are reviewed. The article briefly describes failure investigation pitfalls and concludes with information on the other common tools used for failure investigation and root cause determination.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002450
EISBN: 978-1-62708-194-8
..., design for assembly. Source: Ref 1 At the concept level of design, essentially all materials and processes are considered rather broadly. The materials selection methodology and charts developed by Ashby ( Ref 2 ) are highly appropriate at this stage (see the articles “Material Property Charts...
Abstract
This article describes the process of materials selection in relation to the design process, such as materials selection for a new design and materials substitution for an existing design. It reviews the performance characteristics of materials using prototype tests or field tests to determine their performance under actual service conditions. The article describes the selection of a material in relation to the manufacturing process and presents the factors that influence materials selection based on costs and related aspects. These factors include metallurgical requirements, dimensions, processing, quantity, packing, marking, and loading. The article discusses how the needs for materials data evolve as a design proceeds from conceptual to detail design. It describes the methods of materials selection, namely, cost per unit property method, weighted property index method, and limits on properties method.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006755
EISBN: 978-1-62708-295-2
...), objectively and clearly identify all possible corrective actions, objectively evaluate each corrective action, select optimal corrective action(s), and evaluate effectiveness of selected corrective action(s). Common problems detrimental to a failure investigation are also covered. corrective actions...
Abstract
This article discusses the organization required at the outset of a failure investigation and provides a methodology with some organizational tools. It focuses on the use of problem-solving tools such as a fault tree analysis combined with critical thinking. The discussion covers nine steps to organize a good failure investigation. They are as follows: understand and negotiate goals of the investigation, obtain a clear understanding of the failure, identify all possible root causes, objectively evaluate the likelihood of each root cause, converge on the most likely root cause(s), objectively and clearly identify all possible corrective actions, objectively evaluate each corrective action, select optimal corrective action(s), and evaluate effectiveness of selected corrective action(s). Common problems detrimental to a failure investigation are also covered.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005187
EISBN: 978-1-62708-187-0
... its niche, perhaps by virtue of the metal (or metals) to which it applies, or maybe based on its overall productivity; there can be numerous reasons to select one process over another. Tables 1 and 2 compare some of the typical capabilities of shape casting processes (see also Tables 7, 8, and 9...
Abstract
This article discusses the categories and subcategories of shape casting processes. These include single-use processes such as sand, plaster, ceramic, and graphite molding; essentially unpressurized multiuse processes, such as permanent mold; and high-pressure metal mold methods, such as die casting, squeeze casting, and semisolid processing. The article contains tables that compare some of the typical capabilities of shape casting processes.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003661
EISBN: 978-1-62708-182-5
..., and electrochemical noise measurements. The visual examination, metallographic examination, and nondestructive inspection of pits are discussed. The article reviews the procedures for the use of standard charts, metal penetration, statistical analysis, and loss in mechanical properties to quantify the severity...
Abstract
Pitting is a form of localized corrosion that is often a concern in applications involving passivating metals and alloys in aggressive environments. This article describes the test methods for pitting corrosion. These methods include ASTM G 48, ASTM F 746, ASTM G 61, ASTM G 100, and electrochemical noise measurements. The visual examination, metallographic examination, and nondestructive inspection of pits are discussed. The article reviews the procedures for the use of standard charts, metal penetration, statistical analysis, and loss in mechanical properties to quantify the severity of pitting damage.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003170
EISBN: 978-1-62708-199-3
... nonferrous alloys melt and solidify at lower temperatures than ferrous alloys, metal molds are frequently used. Selected References Selected References • Casting , Vol 15 , ASM Handbook , ASM International , 1988 • Steel Castings Handbook , 6th ed. , Blair M. and Stevens T.L...
Abstract
Metal casting is the manufacturing method in which a metal or an alloy is melted, poured into a mold, and allowed to solidify. Typical uses of castings include municipal hardware, water distribution systems (pipes, pumps, and valves), automotive components (engine blocks, brakes, steering and suspension components, etc.), prosthetics, and gas turbine engine hardware. This introduction explains the steps involved in making a casting using a simplified flow diagram, and discusses the ferrous and nonferrous alloys used for metal casting.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001448
EISBN: 978-1-62708-173-3
... of the monometallic and bimetallic combinations that currently can be ultrasonically welded on a commercial basis. Fig. 1 Chart showing ultrasonically weldable metal combinations. Blank areas in the chart represent combinations that have not been successfully joined or in which welding has not been attempted...
Abstract
Ultrasonic welding (USW) is effectively used to join both similar and dissimilar metals with lap-joint welds. This article describes procedure considerations for the ultrasonic welding of specific material types. It reviews difficult-to-weld alloys, such as carbon and low-alloy steels, high-strength steels, and stainless steel, and provides information on the applications of weldable alloys such as aluminum alloys and copper alloys. The article concludes with a discussion on welding of dissimilar metal (nonferrous-to-nonferrous) combinations and its applications.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006455
EISBN: 978-1-62708-190-0
... flaws in metals. Film Types and Selection The selection of radiographic film for a particular application is generally a compromise between the desired quality of the radiograph and the cost of exposure time. This compromise occurs because slower films generally provide a higher film gradient...
Abstract
Film radiography requires the development of the exposed film so that the latent image becomes visible for viewing. It describes the general characteristics of film, including speed, gradient, and graininess, and the factors affecting film selection and exposure time. The article discusses the three major inspection techniques for tubular sections, namely, the double-wall, double-image technique; the double-wall, single-image technique; and the single-wall, single-image technique. It illustrates the arrangements of penetrameters and identification markers for the radiography of plates, cylinders, and flanges. The article discusses various control methods, including the use of lead screens; protection against backscatter and scatter from external objects; and the use of masks, diaphragms, collimators, and filtration. The radiographic appearance of specific types of flaws is also discussed. The article concludes with a discussion on two methods of radiographic film processing: manual and automatic processing.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003087
EISBN: 978-1-62708-199-3
... detailed as the design progresses through this sequence. At the concept level of design, essentially all materials and processes are considered rather broadly. The materials selection methodology and charts developed by Ashby ( Ref 2 ) are highly appropriate at this stage. The decision is to determine...
Abstract
Engineering design should result in a product that performs its function efficiently and economically within the prevailing legal, social, safety, and reliability requirements. This introductory article discusses some key considerations in design, material selection, and manufacturing that a materials engineer should take into account to satisfy such requirements. It includes a brief section on concurrent engineering, which companies use to ensure that all needed input is obtained and addressed concurrently throughout the product lifecycle, including material selection and processing, product design, cost analysis, manufacturing, recyclability, and performance.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003089
EISBN: 978-1-62708-199-3
... Ductility of a metal, usually measured as the percent reduction in area or elongation that occurs during a tensile test, is often considered an important factor in material selection. It is assumed that, if a metal has a certain minimum elongation in tensile testing, it will not fail in service through...
Abstract
This article discusses the key factors that influence the selection of engineered materials for a particular application. Materials properties such as ultimate tensile strength, yield strength, hardness, and ductility, which chiefly define the performance or functional characteristics, are covered. This is followed by manufacturing process considerations such as material factors, shape factors, process factors, and the characteristics of fabricability, namely formability, workability, castability, machinability, and weldability.
1