Skip Nav Destination
Close Modal
Search Results for
metal selection charts
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 463 Search Results for
metal selection charts
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006623
EISBN: 978-1-62708-210-5
... cracking Tensile or shear strength of the weld Weld ductility Service temperature Corrosion resistance Color match between the weld and base alloy after anodizing aluminum filler metals gas metal arc welding gas tungsten arc welding metal selection charts ...
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006306
EISBN: 978-1-62708-179-5
... microstructure on cutting tool life, and the importance of as-cast surface integrity on the machining variation. It presents examples of cutting tool materials selection for different cast iron grades, and describes the effects of coolants on the machining of cast irons. A chart showing different cutting...
Abstract
Machining of cast iron involves removing metal from the cast part, usually by cutting with a power-driven machine tool. This article discusses the factors that influence machinability, the methods used to evaluate machinability of cast irons, the effects of cast iron microstructure on cutting tool life, and the importance of as-cast surface integrity on the machining variation. It presents examples of cutting tool materials selection for different cast iron grades, and describes the effects of coolants on the machining of cast irons. A chart showing different cutting materials and cutting speed ranges for selected iron-carbon alloys is also presented. Different types of cutting tool wear observed during turning are schematically illustrated.
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006691
EISBN: 978-1-62708-210-5
..., then a preferred arrangement is to have the larger base-alloy surface area be anodic to the weld metal. Alloy 4043 also is a suitable filler for welding common wrought and cast alloys for sustained elevated-temperature service ( Table 4 ). See also “Aluminum Filler Metal Selection Charts” in the Reference...
Abstract
The aluminum alloy 4043 is recommended as a filler metal when resistance to salt water corrosion is required, especially when welding such aluminum alloys as 5052, 6061, and 6063. This datasheet provides information on key alloy metallurgy, and processing effects on tensile properties of this 4xxx series alloy.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002452
EISBN: 978-1-62708-194-8
... for their increasing use in aerospace. Metals are penalized because of their relatively high densities. Polymers, because their densities are low, are favored. The chart has application in selecting materials for light springs and energy-storage devices (Table 5c in the article “Performance Indices,” which...
Abstract
Properties of an engineering material have a characteristic range of values that are conveniently displayed on materials selection charts. This article describes the plotting of data on these charts. It discusses the features of various types of material property charts, namely, modulus-density, strength-density, fracture toughness-density, modulus-strength, specific stiffness-specific strength, fracture toughness-modulus, fracture toughness-strength, loss coefficient-modulus, thermal conductivity-thermal diffusivity, thermal expansion-thermal conductivity, thermal expansion-modulus, and normalized strength-thermal expansion charts. The article examines the use of material property charts in presenting information in a compact and easily accessible manner.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005152
EISBN: 978-1-62708-186-3
... metal thicknesses on the formed stamping means that random stampings can be selected for evaluation after production. SDC Level 1: Control Charting Standard control-charting procedures are used. A typical application would require the removal of five stampings in sequence at the end of the press...
Abstract
Statistics are extremely important tools in the operation of press shops, providing numerical process analysis capabilities. The most common use of statistics in the press shop is statistical process control (SPC) that uses statistical techniques such as control charts to analyze a process or its output to enable appropriate actions to be taken to achieve and maintain a state of statistical control. This article discusses the role of statistics in sheet metal forming operations, both in terms of SPC techniques, such as control charting, statistical deformation control, and experimental design, including single-variable studies, multivariable studies, and Taguchi experiments.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001726
EISBN: 978-1-62708-178-8
...Effective Analytical Approach Tools for Technique Selection Tables and Flow Charts The key to the successful solution of most materials problems is close interaction between the appropriate engineers, materials scientists, and analytical specialists. Engineers and other applications...
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002453
EISBN: 978-1-62708-194-8
..., and selection charts to select materials. beam material property charts material selection performance indices ANY ENGINEERING COMPONENT has one or more functions: to carry bending moments, to contain a pressure, to transmit heat, and so forth. In designing the component, the designer has...
Abstract
This article defines performance indices in a formal way and specifies how they are derived. The performance indices for a light, strong tie and a light, stiff beam are presented. The article presents two case studies that illustrate the use of material indices, shape factors, and selection charts to select materials.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003194
EISBN: 978-1-62708-199-3
...Abstract Abstract This article is a comprehensive collection of summary charts that provide data and information that are helpful in considering and selecting applicable processes alternative to the conventional material-removal processes. Process summary charts are provided for electrochemical...
Abstract
This article is a comprehensive collection of summary charts that provide data and information that are helpful in considering and selecting applicable processes alternative to the conventional material-removal processes. Process summary charts are provided for electrochemical machining, electrical discharge machining, chemical machining, abrasive jet machining, laser beam machining, electron beam machining, ultrasonic impact grinding, hydrodynamic machining, thermochemical machining, abrasive flow machining, and electrical discharge wire cutting.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006755
EISBN: 978-1-62708-295-2
... cause(s), objectively and clearly identify all possible corrective actions, objectively evaluate each corrective action, select optimal corrective action(s), and evaluate effectiveness of selected corrective action(s). Common problems detrimental to a failure investigation are also covered...
Abstract
This article discusses the organization required at the outset of a failure investigation and provides a methodology with some organizational tools. It focuses on the use of problem-solving tools such as a fault tree analysis combined with critical thinking. The discussion covers nine steps to organize a good failure investigation. They are as follows: understand and negotiate goals of the investigation, obtain a clear understanding of the failure, identify all possible root causes, objectively evaluate the likelihood of each root cause, converge on the most likely root cause(s), objectively and clearly identify all possible corrective actions, objectively evaluate each corrective action, select optimal corrective action(s), and evaluate effectiveness of selected corrective action(s). Common problems detrimental to a failure investigation are also covered.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003519
EISBN: 978-1-62708-180-1
..., and create a Corrective Action Assessment (CAA) chart. Step 8: Select Optimal Corrective Action(s) Now it is time to select the optimal corrective action(s). This is step 4 from the “Four-Step Problem-Solving Process,” “What is the best solution?” This step is a repeat of step 5, “Converge on the most...
Abstract
This article reviews the most common reasons for failures and the purpose of a failure investigation. It discusses the nine steps for the organization of a good failure investigation. The three basic tools that are helpful in any failure investigation, namely, a fault tree, a failure mode assessment chart, and a technical plan for resolution chart, are reviewed. The article briefly describes failure investigation pitfalls and concludes with information on the other common tools used for failure investigation and root cause determination.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003223
EISBN: 978-1-62708-199-3
... when selecting a manufacturing process. For example, the scrap value of turnings is low; that of punchings is high. The resale value of alternative metals/alloys for any particular process should also be considered. Once these values have been optimized, the value of the recycled scrap should...
Abstract
Product design greatly influences the recycling and reuse of manufacturing materials. This article presents a design for recycling strategy based on ease of disassembly, minimizing process scrap, using readily recyclable materials, and labelling or otherwise identifying parts. It also discusses the concept of life-cycle analysis (LCA), a quantitative accounting of the environmental and economic costs of using a given material and the energy required to make, distribute, operate, and eventually dispose of the host product and its constituent materials. An important but often overlooked step in the LCA process is to identify potential improvement pathways.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006455
EISBN: 978-1-62708-190-0
... flaws in metals. Film Types and Selection The selection of radiographic film for a particular application is generally a compromise between the desired quality of the radiograph and the cost of exposure time. This compromise occurs because slower films generally provide a higher film gradient...
Abstract
Film radiography requires the development of the exposed film so that the latent image becomes visible for viewing. It describes the general characteristics of film, including speed, gradient, and graininess, and the factors affecting film selection and exposure time. The article discusses the three major inspection techniques for tubular sections, namely, the double-wall, double-image technique; the double-wall, single-image technique; and the single-wall, single-image technique. It illustrates the arrangements of penetrameters and identification markers for the radiography of plates, cylinders, and flanges. The article discusses various control methods, including the use of lead screens; protection against backscatter and scatter from external objects; and the use of masks, diaphragms, collimators, and filtration. The radiographic appearance of specific types of flaws is also discussed. The article concludes with a discussion on two methods of radiographic film processing: manual and automatic processing.
Book Chapter
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005823
EISBN: 978-1-62708-165-8
...-quenched component. Finally, select from available end-quench data a steel that will produce the hardnesses required at each critical J eh location in the finished production part. If end-quench data are not available, calculate a suitable composition by one of the standard methods. The chart...
Abstract
Hardenability refers to the ability of steel to obtain satisfactory hardening to some desired depth when cooled under prescribed conditions. It is governed almost entirely by the chemical composition (carbon and alloy content) at the austenitizing temperature and the austenite grain size at the moment of quenching. This article describes the Jominy end-quench test, the Grossman method, and the air hardenability test to evaluate hardenability. It also reviews the factors that influence steel hardenability and selection.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003661
EISBN: 978-1-62708-182-5
... 100, and electrochemical noise measurements. The visual examination, metallographic examination, and nondestructive inspection of pits are discussed. The article reviews the procedures for the use of standard charts, metal penetration, statistical analysis, and loss in mechanical properties...
Abstract
Pitting is a form of localized corrosion that is often a concern in applications involving passivating metals and alloys in aggressive environments. This article describes the test methods for pitting corrosion. These methods include ASTM G 48, ASTM F 746, ASTM G 61, ASTM G 100, and electrochemical noise measurements. The visual examination, metallographic examination, and nondestructive inspection of pits are discussed. The article reviews the procedures for the use of standard charts, metal penetration, statistical analysis, and loss in mechanical properties to quantify the severity of pitting damage.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006682
EISBN: 978-1-62708-213-6
... are identical (geometrically) to grain boundaries in any alloy that does not exhibit annealing twins, while austenite grains are identical (geometrically) to grain boundaries in any alloy that exhibits annealing twins. Therefore, charts depicting ferrite grains in steel can be used to rate grain size in metals...
Abstract
This article reviews many commonly used stereological counting measurements and the relationships based on these parameters. The discussion covers the processes involved in sampling and specimen preparation. Quantitative microstructural measurements are described including volume fraction, number per unit area, intersections and intercepts per unit length, grain size, and inclusion content.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001029
EISBN: 978-1-62708-161-0
... selection guide. alloying carbon steels H-steels hardenability hardenability limits hardenability selection charts hardenability testing low-alloy steels quenching of steel HARDENABILITY OF STEEL is the property that determines the depth and distribution of hardness induced by quenching...
Abstract
Hardenability of steel is the property that determines the depth and distribution of hardness induced by quenching. Hardenability is usually the single most important factor in the selection of steel for heat-treated parts. The hardenability of a steel is best assessed by studying the hardening response of the steel to cooling in a standardized configuration in which a variety of cooling rates can be easily and consistently reproduced from one test to another. These include the Jominy end-quench test, the carburized hardenability test, and the air hardenability test. Tests that are more suited to very low hardenability steels include the hot-brine test and the surface-area-center test. The article discusses the effects of varying carbon content as well as the influence of different alloying elements. It includes charts and a table that serve as a general steel hardenability selection guide.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005187
EISBN: 978-1-62708-187-0
... casting process has its niche, perhaps by virtue of the metal (or metals) to which it applies, or maybe based on its overall productivity; there can be numerous reasons to select one process over another. Tables 1 and 2 compare some of the typical capabilities of shape casting processes (see also...
Abstract
This article discusses the categories and subcategories of shape casting processes. These include single-use processes such as sand, plaster, ceramic, and graphite molding; essentially unpressurized multiuse processes, such as permanent mold; and high-pressure metal mold methods, such as die casting, squeeze casting, and semisolid processing. The article contains tables that compare some of the typical capabilities of shape casting processes.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002150
EISBN: 978-1-62708-188-7
...Abstract Abstract This article discusses the principles of grinding process. It illustrates a typical wheel-work characteristic chart relating surface finish, wheel wear rate, metal removal rate, and power to the normal force. The article also reviews the effect of variations in work material...
Abstract
This article discusses the principles of grinding process. It illustrates a typical wheel-work characteristic chart relating surface finish, wheel wear rate, metal removal rate, and power to the normal force. The article also reviews the effect of variations in work material, wheel specification, wheel speed, coolant, and grinding wheel-work conformity on the slopes of the wheel-work characteristic chart.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002450
EISBN: 978-1-62708-194-8
... for manufacturing; DFA, design for assembly. Source: Ref 1 At the concept level of design, essentially all materials and processes are considered rather broadly. The materials selection methodology and charts developed by Ashby ( Ref 2 ) are highly appropriate at this stage (see the articles “Material...
Abstract
This article describes the process of materials selection in relation to the design process, such as materials selection for a new design and materials substitution for an existing design. It reviews the performance characteristics of materials using prototype tests or field tests to determine their performance under actual service conditions. The article describes the selection of a material in relation to the manufacturing process and presents the factors that influence materials selection based on costs and related aspects. These factors include metallurgical requirements, dimensions, processing, quantity, packing, marking, and loading. The article discusses how the needs for materials data evolve as a design proceeds from conceptual to detail design. It describes the methods of materials selection, namely, cost per unit property method, weighted property index method, and limits on properties method.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003500
EISBN: 978-1-62708-180-1
..., namely, design deficiencies, material defects, manufacturing/installation defects, and service life anomalies, with examples. The article describes several common charting methods that may be useful in performing an RCA. It also discusses other failure analysis tools, including review of all sources...
Abstract
This article briefly introduces the concepts of failure analysis and root cause analysis (RCA), and the role of failure analysis as a general engineering tool for enhancing product quality and failure prevention. It reviews four fundamental categories of physical root causes, namely, design deficiencies, material defects, manufacturing/installation defects, and service life anomalies, with examples. The article describes several common charting methods that may be useful in performing an RCA. It also discusses other failure analysis tools, including review of all sources of input and information, people interviews, laboratory investigations, stress analysis, and fracture mechanics analysis. The article concludes with information on the categories of failure and failure prevention.