Skip Nav Destination
Close Modal
Search Results for
metal plating
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 2289
Search Results for metal plating
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001254
EISBN: 978-1-62708-170-2
... Abstract The electroplating of platinum-group metals (PGMs) from aqueous electrolytes for engineering applications is limited principally to palladium and, to a lesser extent, to platinum, rhodium, and thin layers of ruthenium. This article provides a discussion on the plating operations...
Abstract
The electroplating of platinum-group metals (PGMs) from aqueous electrolytes for engineering applications is limited principally to palladium and, to a lesser extent, to platinum, rhodium, and thin layers of ruthenium. This article provides a discussion on the plating operations of these PGMs along with the types of anodes used in the process.
Image
Published: 01 January 2006
Fig. 11 Example simulation of shot peen forming for a metal plate. The conditions for this simulation were: explicit calculation with finite element software LS-DYNA3D (Livermore Software Technology Corp.); geometry: 100×20×2 mm 3 ; material: AlMg 3 ; simultaneous double-sided peen forming
More
Image
Published: 01 November 2010
Image
Published: 01 June 2012
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001265
EISBN: 978-1-62708-170-2
... Abstract Electroless, or autocatalytic, metal plating is a nonelectrolytic method of deposition from solution that can be plated uniformly over all surfaces, regardless of size and shape. The plating's ability to plate onto nonconductors is an advantage that contributes to the choice...
Abstract
Electroless, or autocatalytic, metal plating is a nonelectrolytic method of deposition from solution that can be plated uniformly over all surfaces, regardless of size and shape. The plating's ability to plate onto nonconductors is an advantage that contributes to the choice of electroless copper in various applications. This article provides information on the bath chemistry and deposit properties of electroless copper and discusses the applications of electroless copper plating, such as printed wiring boards, decorative plating-on-plastic, electromagnetic interference shielding, and hybrid and other advanced applications. It describes two commercial processes, pretreatment and post-treatment. The article reviews the solutions used, controls and control equipment, and performance criteria of electroless copper plating. It concludes with information on the environmental and safety issues associated with electroless copper plating.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003398
EISBN: 978-1-62708-195-5
... on electromagnetic interference shielding, electrostatic discharge protection, metal plating, fire resistance, and corrosion resistance on composite materials. composites composite laminates fiber-reinforced polymer wet lay-up autoclaves resin transfer molding vacuum-assisted resin transfer molding...
Abstract
This article presents the basic guidelines considered in designing a composite structure, and the basic definitions of terms that apply to composites. It describes the analysis of a composite laminate based on stress-strain relationships, stress-strain load relationships, general load displacement case, and general load case solution. Factors affecting the composite materials properties and allowables of fiber-reinforced polymers are reviewed. The article discusses the process considerations for mold design, such as master model, metal tooling, composite tooling, and tool care. It explains the resin selection in designing the composite for use in a particular application. The article illustrates the various methods that are used to process a composite component, namely, wet lay-up, autoclave, resin transfer molding, and vacuum-assisted resin transfer molding. It provides a discussion on electromagnetic interference shielding, electrostatic discharge protection, metal plating, fire resistance, and corrosion resistance on composite materials.
Image
in Metallography and Microstructures of Zirconium, Hafnium, and Their Alloys
> Metallography and Microstructures
Published: 01 December 2004
Fig. 35 Zr705 plate. (a) Transverse, parent metal. (b) Longitudinal, weld metal, attack polished, etchant procedure No. 5 ( Table 2 ), bright field. These photos show the presence of hydride platelets in the metallurgical structure. Original magnification: 200×
More
Image
Published: 01 December 2008
Image
Published: 01 January 2006
Fig. 13 Tools and clamping plates for controlling metal flow in press forming the part shown. Dimensions given in inches
More
Image
Published: 01 December 2004
Fig. 43 Alloy C28000 (Muntz metal) ingot, hot-rolled plate. Uniform (layer) dezincification. Alpha grains remain in the corroded area (top). Etchant 1, Table 2 . 90×
More
Image
in Transfer of Heat and Mass to the Base Metal in Gas Metal Arc Welding[1]
> Welding Fundamentals and Processes
Published: 31 October 2011
Fig. 12 Transverse cross section of gas metal arc bead-on-plate weld in carbon steel to show deep penetration in the weld bead center generated by molten electrode droplets
More
Image
Published: 30 September 2015
Fig. 11 Metal injection molding Fe-2%Ni, electroless nickel-Teflon plated burst disk wedge (sintered density = 7.6 g/cm 3 , or 0.274 lb/in. 3 ) used in an automobile airbag-actuation assembly. (Teflon is a registered trademark of DuPont.) Courtesy of Kinetics
More
Image
Published: 30 September 2015
Fig. 14 Metal injection molding 316L stainless steel pump body and cavity plates. Tooling options enabled the design to maximize the flow area, minimize outlet and inlet flow velocities, and reduce overall pump dimensions. Courtesy of MPIF
More
Image
Published: 01 December 2004
Fig. 9 25 mm (1.0 in.) type 304 stainless steel plate, shielded metal arc weld. Heat input: 1.0 MJ/m. Micrograph shows austenite-dendrite structure retained across successive weld passes in the fusion zone. Etchant: 10% oxalic acid electroetch. Magnification: 40×
More
Image
Published: 01 December 2004
Fig. 10 25 mm (1.0 in.) type 304 stainless steel plate, shielded metal arc weld. Heat input: 1.0 MJ/m. Macrograph shows epitaxial grain growth resulting in continuous columnar grains occurring through successive passes in a multiple-pass weld. Etchant: 10% oxalic acid electroetch
More
Image
Published: 01 December 2004
Fig. 15 13 mm (0.5 in.) Ti-6Al-2Nb-1Ta-1Mo alloy plate, single-pass gas metal arc weld. Heat input: 0.8 MJ/m. Macrograph showing the columnar prior-β grains resulting from epitaxial growth. Etchant: one-to-one solution, Kroll's reagent and distilled water. Magnification: 4×
More
Image
Published: 01 December 2004
Fig. 17 Weld metal CCT curve for low carbon-manganese steel plate. Weld process: gas metal arc welding (GMAW). Heat input: 1.6 MJ/m. M, martensite; F, ferrite; B, bainite. Source: Ref 12
More
Image
Published: 01 December 2004
Fig. 18 16 mm ( 5 8 in.) A-36 steel plate, multiple-pass shielded metal arc weld. Heat input: 1.3 MJ/m. Composite micrograph of the heat-affected zone showing (from left to right) base plate, tempered zone, partially transformed zone, fine grain zone, coarse grain zone, fusion line
More
Image
Published: 01 December 2004
Fig. 20 16 mm ( 5 8 in.) A-36 steel plate, multiple-pass shielded metal arc single-V butt weld. Heat input: 1.3 MJ/m. Weld wire: AWS E7018. Fusion-zone microstructure containing polygonal ferrite in coarse acicular ferrite. Etchant: 2% nital. Magnification: 500×
More
Image
Published: 01 December 2004
Fig. 22 16 mm ( 5 8 in.) A-36 steel plate, multiple-pass shielded metal arc single-V butt weld. Heat input: 1.3 MJ/m. Weld wire: AWS E7018. Fusion-zone microstructure containing bainite and ferrite-carbide aggregate in coarse grain-boundary ferrite. Etchant: 2% nital. Magnification
More
1