Skip Nav Destination
Close Modal
By
Ruban Whenish, Pearlin Hameed, Revathi Alexander, Joseph Nathanael, Geetha Manivasagam
Search Results for
metal laser powder-bed fusion
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 166
Search Results for metal laser powder-bed fusion
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006957
EISBN: 978-1-62708-439-0
... presents two key opportunities for AM related to automotive applications, specifically within the realm of metal laser powder-bed fusion: alloys and product designs capable of high throughput. The article also presents the general methodology of alloy development for automotive AM. It provides examples...
Abstract
High-volume additive manufacturing (AM) for structural automotive applications, along the lines of economically viable technologies such as powder metallurgy, castings, and stampings, remains a lofty goal that must be realized to obtain the well-known advantages of AM. This article presents two key opportunities for AM related to automotive applications, specifically within the realm of metal laser powder-bed fusion: alloys and product designs capable of high throughput. The article also presents the general methodology of alloy development for automotive AM. It provides examples of unique designs for reciprocating components in elevated-temperature applications that are also exposed to demanding tribological conditions. The article also discusses the future of AM for automotive applications.
Image
in Nondestructive Testing in Additive Manufacturing—A Review
> Additive Manufacturing Design and Applications
Published: 30 June 2023
Fig. 24 Illustration of an eddy current testing (ECT) in-process inspection and corresponding data acquired during the fabrication of five 316L stainless steel samples with different relative densities. PBF-LB/M, metal laser powder-bed fusion
More
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006985
EISBN: 978-1-62708-439-0
... manufactured metal parts aluminum alloys fatigue failure laser powder bed fusion nickel-base superalloys process-induced defects titanium alloys Fatigue as a Critical Performance Metric Fatigue failure is a critical performance metric for additively manufactured (AM) metal parts, especially those...
Abstract
Fatigue failure is a critical performance metric for additively manufactured (AM) metal parts, especially those intended for safety-critical structural applications (i.e., applications where part failure causes system failure and injury to users). This article discusses some of the common defects that occur in laser powder bed fusion (L-PBF) components, mitigation strategies, and their impact on fatigue failure. It summarizes the fatigue properties of three commonly studied structural alloys, namely aluminum alloy, titanium alloy, and nickel-base superalloy.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006564
EISBN: 978-1-62708-290-7
... Abstract This article covers in-line process monitoring of the metal additive manufacturing (AM) methods of laser and electron beam (e-beam) powder-bed fusion (PBF) and directed-energy deposition (DED). It focuses on methods that monitor the component directly throughout the build process...
Abstract
This article covers in-line process monitoring of the metal additive manufacturing (AM) methods of laser and electron beam (e-beam) powder-bed fusion (PBF) and directed-energy deposition (DED). It focuses on methods that monitor the component directly throughout the build process. This article is organized by the type of AM process and by the physics of the monitoring method. The discussion covers two types of monitoring possible with the PBF process: monitoring the area of the powder bed and component and monitoring the melt pool created by the laser or e-beam. Methods for layer monitoring include optical and thermal methods that monitor light reflected or emitted in the visible and infrared wavelengths, respectively. Monitoring methods for laser directed-energy deposition (DED) discussed are those that measure the size and shape of the melt pool, the temperature of the melt pool, and the plasma generated by the laser as it interacts with the molten metal.
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006993
EISBN: 978-1-62708-439-0
...—Requirements, Guidelines, and Recommendations” ISO/ASTM 52911-1 “Additive Manufacturing—Design—Part 1: Laser-Based Powder-Bed Fusion of Metals” ISO/ASTM 52911-2 “Additive Manufacturing—Design—Part 2: Laser-Based Powder-Bed Fusion of Polymers” ISO/ASTM 52911-3 “Additive Manufacturing—Design—Part 3...
Abstract
This article presents the history of standardization in additive manufacturing (AM). It explains the need and structure for standardization in AM, including the application of AM standards by the industry sector. It also presents the primary purposes of these standards to create AM qualification and certification frameworks.
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0007023
EISBN: 978-1-62708-439-0
... testing (ECT) in-process inspection and corresponding data acquired during the fabrication of five 316L stainless steel samples with different relative densities. PBF-LB/M, metal laser powder-bed fusion Figure 25 presents another x - z image, which was acquired during an in-process eddy current...
Abstract
This article covers defect formation and classification, followed by a brief description of the most common nondestructive testing (NDT) methods used for postbuild inspection. Descriptions of the established and emerging NDT techniques for in-process monitoring (IPM) and in-process inspection (IPI) in additive manufacturing (AM) also are provided, highlighting the advantages and limitations. The article concludes with a list of the main NDT methods and techniques used. As qualification and certification of AM parts is an urgent matter for the AM industry, a description of the current work carried out for developing standards is also included.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006576
EISBN: 978-1-62708-290-7
... Abstract This article provides a brief overview of additive manufacturing (AM) of tool steels via various AM technologies such as laser powder bed fusion, electron powder bed fusion, blown powder directed energy deposition, and binder jet AM. The discussion includes process overview and covers...
Abstract
This article provides a brief overview of additive manufacturing (AM) of tool steels via various AM technologies such as laser powder bed fusion, electron powder bed fusion, blown powder directed energy deposition, and binder jet AM. The discussion includes process overview and covers the mechanism, advantages, and applications of each of these techniques.
Book Chapter
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006883
EISBN: 978-1-62708-392-8
..., it is more restricted for metallic materials ( Ref 24 ). Selective Laser Melting Selective laser melting (SLM) is the laser powder-bed fusion AM process that is predominantly applied for semicrystalline thermoplastic powder-based applications. Selective laser melting has the potential to generate...
Abstract
According to International Organization for Standardization (ISO)/ASTM International 52900, additive manufacturing (AM) can be classified into material extrusion, material jetting, vat photo polymerization, binder jetting, sheet lamination, powder-bed fusion (PBF), and directed-energy deposition. This article discusses the processes involved in polymer powder 3D printing using laser fusion/ sintering and fusing agents and energy, as well as the thermally fused PBF. It provides information on polymer powder parameters and modeling, the powder-handling system, powder characterization, the flowability of powder feedstock, and polymer part characteristics. The article describes the types of polymers in PBF, the processes involved in powder recycling, and the prospects of PBF in AM. In addition, the biomedical application of polyether ether ketone (PEEK) is also covered.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006545
EISBN: 978-1-62708-290-7
... , 1977 , p 3895 , 10.1063/1.324261 45. King W.E. , Anderson A.T. , Ferencz R.M. , Hodge N.E. , Kamath C. , Khairallah S.A. , and Rubenchik A.M. , Laser Powder Bed Fusion Additive Manufacturing of Metals: Physics, Computational, and Materials Challenges...
Abstract
Fusion-based additive manufacturing (AM) processes rely on the formation of a metallurgical bond between a substrate and a feedstock material. Energy sources employed in the fusion AM process include conventional arcs, lasers, and electron beams. Each of these sources is discussed, with an emphasis on their principles of operation, key processing variables, and the influence of each source on the transfer of heat and material. Common energy sources used for metals AM processes, particularly powder-bed fusion and directed-energy deposition, are also discussed. Brief sections at the end of the article discuss the factors dictating the choice of each of these energy sources and provide information on alternative sources of AM.
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006972
EISBN: 978-1-62708-439-0
... Abstract This article presents a general understanding of causes and possible solutions for defects in the most common metal additive manufacturing (AM) processes: laser powder-bed fusion (L-PBF), laser directed-energy deposition (DED-L), and binder jetting (BJ). additive manufacturing...
Abstract
This article presents a general understanding of causes and possible solutions for defects in the most common metal additive manufacturing (AM) processes: laser powder-bed fusion (L-PBF), laser directed-energy deposition (DED-L), and binder jetting (BJ).
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006838
EISBN: 978-1-62708-329-4
... for melting and depositing Direct manufacturing Uses electron beam and metal wire for melting and depositing Shaped metal deposition or wire and arc AM Uses electric arc and metal wire for melting and depositing Powder-bed fusion methods Selective laser sintering Uses laser and metal powder...
Abstract
This article provides an overview of metal additive manufacturing (AM) processes and describes sources of failures in metal AM parts. It focuses on metal AM product failures and potential solutions related to design considerations, metallurgical characteristics, production considerations, and quality assurance. The emphasis is on the design and metallurgical aspects for the two main types of metal AM processes: powder-bed fusion (PBF) and directed-energy deposition (DED). The article also describes the processes involved in binder jet sintering, provides information on the design and fabrication sources of failure, addresses the key factors in production and quality control, and explains failure analysis of AM parts.
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006955
EISBN: 978-1-62708-439-0
... Abstract Part quality in additive manufacturing (AM) is highly dependent on process control, but there is a lack of adequate AM control methods and standards. Laser powder-bed fusion (L-PBF) is one of the most-used metal AM techniques. This article focuses on the following laser control...
Abstract
Part quality in additive manufacturing (AM) is highly dependent on process control, but there is a lack of adequate AM control methods and standards. Laser powder-bed fusion (L-PBF) is one of the most-used metal AM techniques. This article focuses on the following laser control parameters: laser focus, laser power, laser position, and laser power-position synchronization. It then provides a discussion on laser scan strategies. The article also provides an overview of the AM control framework, the two major sections of which are software and hardware.
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006956
EISBN: 978-1-62708-439-0
...-to-metal processes that use either powder or wire feedstock ( Ref 46 ). These processes use an energy source to melt metallic material. Powder-bed fusion can build parts from powder materials using either a laser (L-PBF) or an electron beam (EB-PBF) as an energy heat source ( Ref 46 , 47 ). In contrast...
Abstract
X-ray imaging is a nondestructive evaluation (NDE) technique in which x-ray waves interact with an observed sample to generate images from which information about the examined object can be derived. This article discusses x-ray imaging systems and applications, presenting the history and role of x-ray imaging. It describes different setups that are implemented at various facilities that conduct x-ray imaging for different types of metal AM processes. The article also discusses different types of dynamics observed in experimental metal AM processes using x-ray imaging systems. It presents the future of x-ray imaging in metal AM.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006543
EISBN: 978-1-62708-290-7
... strength POWDER BED FUSION (PBF) of polymers is a collection of additive manufacturing (AM) processes that melt and fuse polymer in a powder bed. The general process for laser sintering using a scanning laser beam on the surface of the powder bed is illustrated in Fig. 1 . A thin layer of powder...
Abstract
Powder bed fusion (PBF) of polymers is a collection of additive manufacturing processes that melt and fuse polymer in a powder bed. This article provides a complete suite of materials and processes involved in PBF of polymers. The discussion includes details of thermal and manufacturing issues, and safety, postprocessing, and finishing considerations, as well as of principal defects in PBF polymer parts and the mechanical properties of the parts produced by PBF. The article provides case studies on the applications of polymer PBF.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006907
EISBN: 978-1-62708-392-8
... Abstract Additive manufacturing (AM) techniques include powder-bed fusion (PBF), directed-energy deposition, binder jetting (BJ), extrusion-based desktop, vat photopolymerization, material jetting, and sheet lamination. The development of suitable powders for AM is a challenging task because...
Abstract
Additive manufacturing (AM) techniques include powder-bed fusion (PBF), directed-energy deposition, binder jetting (BJ), extrusion-based desktop, vat photopolymerization, material jetting, and sheet lamination. The development of suitable powders for AM is a challenging task because of critical design parameters including chemical composition, flowability of powders, and melt surface tension. This article explains the fabrication methods of metal and novel alloy powders for medical applications. The development of zirconium alloy powder for laser-PBF is introduced as a case study.
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006986
EISBN: 978-1-62708-439-0
... Abstract Physics-based feedforward control is discussed in this article for two important laser-based metal additive manufacturing (AM) processes: directed-energy deposition and laser powder-bed fusion. For each type of process, control-oriented, lumped-parameter models that characterize melt...
Abstract
Physics-based feedforward control is discussed in this article for two important laser-based metal additive manufacturing (AM) processes: directed-energy deposition and laser powder-bed fusion. For each type of process, control-oriented, lumped-parameter models that characterize melt pool dynamics as a function of process parameters are discussed first. Then, the derivation of model-based controllers is illustrated, followed by experimental evaluations of the model-based controller implemented as a feedforward control on a commercial AM system.
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006989
EISBN: 978-1-62708-439-0
... for Use in Additive Manufacturing of Aerospace Parts,” June 08, 2018 AMS 7002A, “Process Requirements for Production of Metal Powder Feedstock for Use in Additive Manufacturing of Aerospace Parts,” May 16, 2022 AMS 7003, “Laser Powder-Bed Fusion Process,” June 08, 2018 AMS 7005, “Wire-Fed Plasma Arc...
Abstract
The aviation industry has been driving the use of additive manufacturing (AM), moving from one-off demonstrator or pathfinder components toward higher-volume serial production applications. This article presents an introduction to AM in aviation, explaining how aviation requirements apply to AM. It also presents advancements, standards, and future expectations of aviation.
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006954
EISBN: 978-1-62708-439-0
... Abstract This article provides readers with a brief review of the applications of thermography in additive manufacturing (AM), which still is largely a research and development (R&D) effort. There is a particular focus on metals-based laser powder-bed fusion (L-PBF), although applications...
Abstract
This article provides readers with a brief review of the applications of thermography in additive manufacturing (AM), which still is largely a research and development (R&D) effort. There is a particular focus on metals-based laser powder-bed fusion (L-PBF), although applications in directed-energy deposition (DED) and electron beam PBF (E-PBF) also are mentioned. The metrological basis of thermography is discussed in the article. Background information on radiation thermometry is provided, including how the various equations are applied. Finally, specific examples and lessons learned from various AM thermographic studies at the National Institute of Standards and Technology (NIST) are provided.
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006992
EISBN: 978-1-62708-439-0
... metal AM, including methods to identify pores and voids in AM materials, are the focus. The article reviews flaw formation in laser-based powder-bed fusion, summarizes sensors used for in situ process monitoring, and outlines advances made with in situ process-monitoring data to detect AM process flaws...
Abstract
The use of additive manufacturing (AM) is increasing for high-value, critical applications across a range of disparate industries. This article presents a discussion of high-valued engineering components predominantly used in the aerospace and medical industries. Applications involving metal AM, including methods to identify pores and voids in AM materials, are the focus. The article reviews flaw formation in laser-based powder-bed fusion, summarizes sensors used for in situ process monitoring, and outlines advances made with in situ process-monitoring data to detect AM process flaws. It reviews investigations of ML-based strategies, identifies challenges and research opportunities, and presents strategies for assessing anomaly detection performance.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006888
EISBN: 978-1-62708-392-8
...), directed-energy deposition (DED), and laser powder-bed fusion (LPBF). Binder Jet The BJ process creates a green part by depositing binder fluid on a layer of metallic powder. This process is repeated in a layerwise fashion to create the entire part ( Fig. 5 ) ( Ref 38 ). The part then typically...
Abstract
Metallic alloys that are typically used for medical purposes include stainless steels, Ti-6Al-4V, and Co-Cr-Mo. This article discusses the relative merits of each of these alloys. The utilization of stainless steels in the biomedical industry, especially in relation to the additive manufacturing (AM) process, is the main focus of this article. The characteristics of various stainless steels are described subsequently, and the categories that are of relevance to the biomedical industry are identified. The types of stainless steels covered are austenitic, ferritic, martensitic, duplex, and precipitation-hardened stainless steels. The article discusses the potential benefits of AM for biomedical devices. It describes the types of AM processes for stainless steels, namely binder jet, directed-energy deposition, and laser powder-bed fusion. The article reviews the AM of austenitic, martensitic, and PH stainless steels for biomedical applications. In addition, the challenges and obstacles to the clinical use of AM parts are covered.
1