Skip Nav Destination
Close Modal
Search Results for
medium-thick-plate model
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 588 Search Results for
medium-thick-plate model
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005573
EISBN: 978-1-62708-174-0
... Abstract This article reviews the classical models for the pseudo-steady-state temperature distribution of the thermal field around moving point and line sources. These include thick- and thin-plate models and the medium-thick-plate model. The analytical solutions to the differential heat flow...
Abstract
This article reviews the classical models for the pseudo-steady-state temperature distribution of the thermal field around moving point and line sources. These include thick- and thin-plate models and the medium-thick-plate model. The analytical solutions to the differential heat flow equation under conditions applicable to fusion welding are provided. The article also provides an overview of the factors affecting heat flow in a real welding situation using the analytical modeling approach because this makes it possible to derive relatively simple equations that provide the required background for an understanding of the temperature-time pattern.
Image
Published: 31 October 2011
Fig. 12 General heat flow model for welding on medium-thick plates. (a) Physical representation of the heat distribution by elementary point sources. (b) Method for calculating the temperature field around an elementary point source displaced along the y -axis. (c) Method for calculating
More
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001333
EISBN: 978-1-62708-173-3
... ) developed an analytical solution for a model that incorporated a welding heat source with a skewed Gaussian distribution and finite plate thickness. It was later called the “finite source theory” ( Ref 6 ). With the advancement of computer technology and the development of numerical techniques like...
Abstract
During fusion welding, the thermal cycles produced by the moving heat source cause physical state changes, metallurgical phase transformation, and transient thermal stress and metal movement. This article presents an analysis of heat flow in the fusion welding process. The primary objective of welding heat flow modeling is to provide a mathematical tool for thermal data analysis, design iterations, or the systematic investigation of the thermal characteristics of any welding parameters. The article addresses analytical heat-flow solutions and their practical applications. It describes the effects of material property and welding condition on the temperature distribution of weldments. The thermal properties of selected engineering materials are provided in a table.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005588
EISBN: 978-1-62708-174-0
... an analytical solution for a model that incorporated a welding heat source with a skewed Gaussian distribution and finite plate thickness. It was later called the finite source theory ( Ref 6 ). With the advancement of computer technology and the development of numerical techniques such as the finite...
Abstract
The finished product, after fusion welding, may contain physical discontinuities due to excessively rapid solidification, adverse microstructures due to inappropriate cooling, or residual stress and distortion due to the existence of incompatible plastic strains. To analyze these problems, this article presents an analysis of the welding heat flow, with focus on the fusion welding process. It discusses the analytical heat-flow solutions and their practical applications. The article concludes with a description of the effects of material property and welding condition on the temperature distribution of weldments.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001295
EISBN: 978-1-62708-170-2
... as well as the thickness and optical properties of overlying films. From this concept of elliptical polarization, the term ellipsometry takes its name for the measurement of induced ellipticity. Complex Index of Refraction When light passes from one medium (e.g., ordinary room air) into another...
Abstract
Measuring the thickness of thin films can be accomplished in many ways. This article focuses on the optical method of single-wavelength ellipsometry, two multiple-wavelength methods of reflectometry and spectroscopic ellipsometry for measuring the thickness of thin films. The general capabilities, principles and applications of ellipsometry and reflectometry are discussed in terms of nondestructive methods.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001351
EISBN: 978-1-62708-173-3
.... Simple determinations of flyer plate standoff distance resulting from empirical testing are often used. Carpenter et al. ( Ref 10 ) state that the standoff distance should be small enough to allow continuous acceleration of the flyer plate. Standoff distances that are twice the flyer plate thickness...
Abstract
Explosion welding (EXW), also known as explosive bonding, is accomplished by a high-velocity oblique impact between two metals. This article describes the practice of producing an explosive bond/weld and draws on many previous research results in order to explain the mechanisms involved. It provides a schematic illustration of the arrangement used in the parallel gap explosive bonding process. The article discusses several important concepts pertaining to explosive parameters, hydrodynamic flow, jetting, and metal properties. It summarizes the criteria used to model the explosive bonding process. The article describes bond morphology in terms of wave formation, bond microstructure, and bond strength determination.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005456
EISBN: 978-1-62708-196-2
... Schematic of the slab element in plane-strain drawing of a plate (left) and the balance of forces on the selected slab, where F = drawing force, t e = thickness of plate at exit, t o = thickness of plate at entry, α = half-angle of the die, w = width of the plate, dx = thickness of differential...
Book Chapter
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0009015
EISBN: 978-1-62708-187-0
... exact alignment must be held, as in high-speed machinery, machine tool parts, or engine end plates and housings that carry shafts. Nonetheless, there are a number of challenges in the design of castings. To begin, component geometry and properties are closely interrelated in casting design. Most...
Abstract
This article provides a general introduction on casting processes and design techniques. It discusses the process steps and methods of the main categories of shape casting methods, namely, expendable molds with permanent patterns, expendable molds with expendable patterns, and metal or permanent mold processes. The article lists the general guidelines of geometry in casting design. It describes the three separate contractions that are a result of cooling: liquid-liquid contraction, solid-solid contraction, and liquid-solid contraction. Factors influencing the solidification sequence of simple shapes, such as T-sections, X-sections, and L-sections, are discussed. The article also presents an overview of geometric factors that influence heat transfer and transport phenomena. It concludes with a description of the structure and properties of castings.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004028
EISBN: 978-1-62708-185-6
...) is discussed. The latter, plus deformation at room temperature are reported by Tomé et al ( Ref 20 ). Tensile and compressive samples were cut from the plate and tested at quasi-static rates (10 −3 s −1 ) in through-thickness compression (TTC), in-plane compression (IPC), and in-plane tension (IPT...
Abstract
This article outlines several polycrystal formulations commonly applied for the simulation of plastic deformation and the prediction of deformation texture. It discusses the crystals of cubic and hexagonal symmetry that constitute the majority of the metallic aggregates used in technological applications. The article defines the basic kinematic tensors, reports their relations, and presents expressions for calculating the change in crystallographic orientation associated with plastic deformation. It surveys some of the polycrystal models in terms of the relative strength of the homogeneous effective medium (HEM). The article analyzes the anisotropy predictions of rolled face-centered-cubic and body centered-cubic sheets and presents simulations of the axial deformation of hexagonal-close-packed zirconium. The applications of polycrystal constitutive models to the simulation of complex forming operations, through the use of the finite element method, are also presented.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006252
EISBN: 978-1-62708-169-6
... °F) Hole drilling σ max = −200 (−29) σ min = −100 (−15) Chobaut 23 7449 Plate 310 × 310 × 75 12.2 × 12.2 × 3.0 472 882 … Neutron diffraction σ max = 200 (29) σ min = −300 (−44) The greater utilization in thick sections of 7000-series alloys has resulted...
Abstract
The presence of macroscopic residual stresses in heat treatable aluminum alloys can give rise to machining distortion, dimensional instability, and increased susceptibility to in-service fatigue and stress-corrosion cracking. This article details the residual-stress magnitudes and distributions introduced into aluminum alloys by thermal operations associated with heat treatment. The available technologies by which residual stresses in aluminum alloys can be relieved are also described. The article shows why thermal stress relief is not a feasible stress-reduction technology for precipitation-