1-20 of 394 Search Results for

medium-density powder metallurgy

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003119
EISBN: 978-1-62708-199-3
... Abstract Stainless steel powder metallurgy (P/M) parts represent an important and growing segment of the P/M industry. This article describes the processing, properties, and composition of medium-density and high-density P/M stainless steels. Medium-density materials are processed by pressing...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003112
EISBN: 978-1-62708-199-3
... Abstract Iron powders are the most widely used powder metallurgy (P/M) material for structural parts. This article reviews low to medium density iron and low-alloy steel parts produced by the pressing and sintering technology. It explains different powder production methods, including Hoeganaes...
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006118
EISBN: 978-1-62708-175-7
... exhaust applications are sintered at a high temperature in a 100% hydrogen atmosphere. Since reduction of carbon via reaction with the oxygen present in the powder is rapid at high temperatures, significant reduction is achieved in carbon content. High-density PM ferritic components, with their very low...
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006022
EISBN: 978-1-62708-175-7
... to full density. The article outlines the freeform fabrication process, also known as additive manufacturing and describes finishing operations of PM parts. It concludes with information on the applications of PM parts. freeform fabrication full density processing metal powders powder metallurgy...
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006134
EISBN: 978-1-62708-175-7
... Abstract The technology to fabricate lower-density, porous powdered metal materials provides unique engineering solutions for many applications. This article summarizes the characteristics and applications of porous powder metallurgy technology, as well as the fabrication methods employed...
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002486
EISBN: 978-1-62708-194-8
... Abstract This article begins with a discussion on general powder metallurgy design considerations that assist in the selection of the appropriate processing method. It reviews powder processing techniques, conventional press-and-sinter methods, and full-density processes to understand...
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006089
EISBN: 978-1-62708-175-7
... Abstract Milling of materials, whether hard and brittle or soft and ductile, is of prime interest and of economic importance to the powder metallurgy (PM) industry. This article discusses the principles of milling, milling parameters, and the powder characteristics required for the process...
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006120
EISBN: 978-1-62708-175-7
... ferritic stainless steels Table 4 Mechanical properties of powder metallurgy ferritic stainless steels Grade Sintered density, g/cm 3 Sintering temperature Sintering atmosphere Ultimate tensile strength Yield strength Elongation, % Hardness, HRB Impact energy Reference °C °F MPa...
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005971
EISBN: 978-1-62708-168-9
... the best combination of attributes. Complete removal of the lubricant is important for optimal final properties, but some remnant of the metal content of many lubricants can remain even with the best of efforts. Properties of powder metallurgy parts are strongly dependent on part density, which in turn...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003135
EISBN: 978-1-62708-199-3
... other, are difficult to alloy by conventional ingot metallurgy. Copper-lead powder mixtures have excellent cold pressing properties; they can be compacted at pressures as low as 76 MPa (11 ksi) to densities as high as 80% of theoretical density. After sintering, they can be repressed at pressures as low...
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006100
EISBN: 978-1-62708-175-7
... Abstract Friction materials are the components of a mechanism that converts mechanical energy into heat upon sliding contact. This article discusses the selection criteria, manufacturing process, and applications of friction powder metallurgy materials. It provides information...
Book Chapter

By Erhard Klar
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003185
EISBN: 978-1-62708-199-3
... ). Fig. 1 Powder metallurgy parts markets for North America, 1995. Source: Metal Powder Industries Federation In the 1950s and 1960s the structural parts segment of the P/M industry expanded toward higher and full density processes and products. This led to increasing competition of the P/M...
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006067
EISBN: 978-1-62708-175-7
..., ferritic, and martensitic, are well suited for manufacture via conventional powder metallurgy (PM) processes. This article presents the iron-chromium partial phase diagram to illustrate the changes in the temperature range when pure iron is alloyed with chromium. It describes AISI and UNS numbering systems...
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006114
EISBN: 978-1-62708-175-7
... such as engine lubrication and automatic transmissions. For higher stress applications up to 20 MPa (3 ksi), alloy steels at the minimum density of 7.1 g/cm 3 are used. Powder metallurgy material requirements for pump gear applications at various stress levels are given in Table 1 . Material requirements...
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001070
EISBN: 978-1-62708-162-7
... Abstract This article briefly reviews the subject of copper-base powder-metallurgy (P/M) products in terms of powder production methods (atomization, oxide reduction, electrolysis, and hydrometallurgy) and the product properties/consolidation practices of the major applications. Of the four...
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006095
EISBN: 978-1-62708-175-7
... Abstract This article focuses on mechanical testing characterization of blended elemental powder metallurgy (PM) titanium alloys and prealloyed PM titanium alloys. It examines the tensile properties, fracture toughness, stress-corrosion threshold resistance, fatigue strength, crack propagation...
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006084
EISBN: 978-1-62708-175-7
... molten metal and atomizing medium; A , distance between molten metal and nozzle; D , diameter of confined molten metal nozzle; P , protrusion length of metal nozzle Closed or confined nozzle designs enhance the yield of fine powder particles (∼10 μm) by maximizing gas velocity and density...
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006649
EISBN: 978-1-62708-213-6
... on the important properties to characterize powders, namely the particle size, surface area, density, porosity, particle hardness, compressibility, green strength, and flowability. For characterization of powders, both individual particles and bulk powders are used to evaluate their physical and chemical...
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006068
EISBN: 978-1-62708-175-7
... pressing are usually made by gas atomization, and these powder metallurgy (PM) techniques typically produce fully dense parts. Fig. 1 Examples of water-atomized stainless steel powder. (a) 409L. (b) 316 of high apparent density (slightly more rounded edges). Both scanning electron microscope images...
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006583
EISBN: 978-1-62708-290-7
... pure molybdenum and Mo-0.45%C Material Manufacturing process Theoretical density, g/cm 3 Density, g/cm 3 Relative density, % Hardness, HV 10 Three-point bending strength MPa ksi Pure Mo Powder metallurgy recrystallized 10.2 … … 160–180 950 138...