Skip Nav Destination
Close Modal
Search Results for
medium current semiconductor implanter
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 53 Search Results for
medium current semiconductor implanter
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001292
EISBN: 978-1-62708-170-2
... and discusses the advantages, limitations, and applications of ion implantation. It also reviews a typical medium current semiconductor implanter adapted for implantation of metals with the aid of illustrations. bombardment ion implantation medium current semiconductor implanter medium-to-high-energy...
Abstract
Ion implantation involves the bombardment of a solid material with medium-to-high-energy ionized atoms and offers the ability to alloy virtually any elemental species into the near-surface region of any substrate. This article describes the fundamentals of the ion implantation process and discusses the advantages, limitations, and applications of ion implantation. It also reviews a typical medium current semiconductor implanter adapted for implantation of metals with the aid of illustrations.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006641
EISBN: 978-1-62708-213-6
... Metallurgical High-temperature alloys, high-purity metals Nuclear Hot waste, uranium, nuclear fuel Semiconductor Acids, bases, organic solvents, precursors, ion implants Water ICP-MS is an ideal analytical technique for analysis of deionized water, drinking water, groundwater, natural fresh...
Abstract
This article discusses the basic principles of inductively coupled plasma mass spectrometry (ICP-MS), covering different instruments used for performing ICP-MS analysis. The instruments covered include the sample-introduction system, ICP ion source, mass analyzer, and ion detector. Emphasis is placed on ICP-MS applications in the semiconductor, photovoltaic, materials science, and other electronics and high-technology areas.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003220
EISBN: 978-1-62708-199-3
...) on plastics and semiconductors Process Description. Ion implantation in- nents for wear resistance. Low-shear Solid film lubricants (for example, volves the bombardment of a solid material with silver and gold) Decorative coatings (TiN yields gold-colored medium-to-high-energy ionized atoms and offers...
Abstract
Although stainless steel is naturally passivated by exposure to air and other oxidizers, additional surface treatments are needed to prevent corrosion. Passivation, pickling, electropolishing, and mechanical cleaning are important surface treatments for the successful performance of stainless steel. This article describes the surface treatment of stainless steels including abrasive blast cleaning, acid pickling, salt bath descaling, passivation treatments, electropolishing, and the necessary coating processes involved. It also describes the surface treatment of heat-resistant alloys including metallic contaminant removal, tarnish removal, oxide and scale removal, finishing, and coating processes.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003681
EISBN: 978-1-62708-182-5
... sections. Ion Implantation Surface modification by ion implantation is a technique that was derived from the semiconductor industry. Specimens for corrosion research were initially prepared by using high-energy research instrumentation or commercial semiconductor implanters. Equipment for surface...
Abstract
Surface modification is the alteration of the surface composition or structure using energy or particle beams. This article discusses two different surface modification methods. The first, ion implantation, is the introduction of ionized species into the substrate using kilovolt to megavolt ion accelerating potentials. The second method, laser processing, is high-power laser melting with or without mixing of materials precoated on the substrate, followed by rapid melt quenching. The article also describes the advantages and disadvantages of the surface modification approach to promote corrosion resistance.
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005746
EISBN: 978-1-62708-171-9
... articles from various proceedings from 2006 to 2012. Key ITSC Papers Table 1 Key ITSC Papers Paper title Authors Source Year Ceramic Coatings Prepared by Plasma Spraying for Semiconductor Production Equipment N. Kato, H. Mizuno, H. Ibe, and J. Kitamura Proceedings of the 2006...
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004207
EISBN: 978-1-62708-184-9
... the electrode potentials as well as measuring the generated current response. There are several ASTM International standard test methods for localized corrosion testing, and some are particular for implant materials. Five ASTM standards are concerned with localized corrosion and mechanically assisted...
Abstract
This article tabulates the chemical composition of iron-base, titanium-base, and cobalt-base alloys and illustrates the microstructures of these materials. It discusses the surface morphology and chemistry of oxide-film-covered alloys and provides insights into the interaction. The article illustrates the interfacial structure of a biomaterial surface contacting with the biological environment. It describes the corrosion behavior of stainless steel, cobalt-base alloy, and titanium alloys. The electrochemical methods used for studying metallic biomaterials corrosion are also discussed. The article concludes with information on the biological consequences of in vivo corrosion and biocompatibility.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001295
EISBN: 978-1-62708-170-2
... methods for determining the thickness of a film is that the light must be able to reach the bottom of the film and interact with the underlying layer. Transparent materials such as most oxides qualify throughout the above-mentioned thickness range up to a few micrometers. Many semiconductors are nearly...
Abstract
Measuring the thickness of thin films can be accomplished in many ways. This article focuses on the optical method of single-wavelength ellipsometry, two multiple-wavelength methods of reflectometry and spectroscopic ellipsometry for measuring the thickness of thin films. The general capabilities, principles and applications of ellipsometry and reflectometry are discussed in terms of nondestructive methods.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006677
EISBN: 978-1-62708-213-6
..., and fidelity that help to define our current usage of the term focused . The population of FIB instrumentation has grown steadily, and it now represents a substantial fraction of the wider “charged particle beam” family that includes scanning electron microscopes (SEMs) and transmission electron...
Abstract
This article is intended to provide the reader with a good understanding of the underlying science, technology, and the most common applications of focused ion beam (FIB) instruments. It begins with a survey of the various types of FIB instruments and their configurations, discusses the essential components, and explains their function only to the extent that it helps the operator obtain the desired results. An explanation of how the components of ion optical column shape and steer the ion beam to the desired target locations is then provided. The article also reviews the many diverse accessories and options that enable the instrument to realize its full potential across all of the varied applications. This is followed by a detailed analysis of the physical processes associated with the ion beam interacting with the sample. Finally, a complete survey of the most prominent FIB applications is presented.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002466
EISBN: 978-1-62708-194-8
... for strip cladding. There are a large number of processing parameters that must be considered when attempting to optimize welding processes for surface application: All processes Voltage across the arc Current through the arc Current polarity Current pulsing parameters Travel speed...
Abstract
Surface treatments are used in a variety of ways to improve the material properties of a component. This article provides information on surface treatments that improve service performance so that the design engineer may consider surface-engineered components as an alternative to more costly materials. It describes solidification surface treatments such as hot dip coatings, weld overlays, and thermal spray coatings. The article discusses deposition surface treatments such as electrochemical plating, chemical vapor deposition, and physical vapor deposition processes. It explains surface hardening and diffusion coatings such as carburizing, nitriding, and carbonitriding. The article also tabulates typical characteristics of carburizing, nitriding, and carbonitriding diffusion treatments.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003062
EISBN: 978-1-62708-200-6
..., and good thermal shock resistance. Alumina is currently the most widely used ceramic substrate material, because it satisfies most requirements. Beryllia, because of its high thermal conductivity, is used where heat dissipation is critical. Aluminum nitride combines high thermal conductivity...
Abstract
Ceramic materials serve important insulative, capacitive, conductive, resistive, sensor, electrooptic, and magnetic functions in a wide variety of electrical and electronic circuitry. This article focuses on various applications of advanced ceramics in both electric power and electronics industry, namely, dielectric, piezoelectric, ferroelectric, sensing, magnetic and superconducting devices.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003976
EISBN: 978-1-62708-185-6
... resistance to abrasive wear. Air-Hardening Medium-Alloy Tool Steels (A2, A7, A8, A9) Manganese, chromium, molybdenum, and vanadium are the principal alloying elements in this group of tool steels. These steels have moderate resistance to thermal softening and, because of their high carbon content...
Abstract
This article describes die wear and failure mechanisms, including thermal fatigue, abrasive wear, and plastic deformation. It summarizes the important attributes required for dies and the properties of the various die materials that make them suitable for particular applications. Recommendations on the selection of the materials for hot forging, hot extrusion, cold heading, and cold extrusion are presented. The article discusses the methods of characterizing abrasive wear and factors affecting abrasive wear. It discusses various die coatings and surface treatments used to extend the lives of dies: alloying surface treatments, micropeening, and electroplating.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001775
EISBN: 978-1-62708-178-8
... taken hold. This has been due to the need for rapid growth of planar technology in semiconductors and the availability of compatible data processing systems. In the mid-1960s, the discovery of channeling phenomena and recognition of ion implantation in material doping and alteration provided additional...
Abstract
Rutherford backscattering spectrometry (RBS) is a major materials characterization technique that can provide information in a short analysis time. It is used for quantitative compositional analysis of thin films, layered structures, or bulk materials and to measure surface impurities of heavy elements on substrates of lighter elements. This article focuses on RBS and its principles, such as collision kinematics, scattering cross section, and energy loss. It describes the channeling effect and the operation of the RBS equipment. The article also provides information on the applications of RBS.
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005707
EISBN: 978-1-62708-171-9
... techniques such as conventional CVD, laser-assisted CVD, cathodic arc deposition, molecular beam epitaxy, ion plating, and sputtering. anodizing case hardening chemical vapor deposition corrosion electroplating hardfacing hot dip coating ion implantation ion plating physical vapor deposition...
Abstract
Coatings and other surface modifications are used for a variety of functional, economic, and aesthetic purposes. Two major applications of thermal spray coatings are for wear resistance and corrosion resistance. This article discusses thermal (surface hardening) and thermochemical (carburizing, nitriding, and boriding) surface modifications, electrochemical treatments (electroplating, and anodizing), chemical treatments (electroless plating, phosphating, and hot dip coating), hardfacing, and thermal spray processes. It provides information on chemical and physical vapor deposition techniques such as conventional CVD, laser-assisted CVD, cathodic arc deposition, molecular beam epitaxy, ion plating, and sputtering.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003549
EISBN: 978-1-62708-180-1
... (an automobile fender or a steel pier piling are examples). Corrosion occurs. The anodic reaction is: (Eq 14) Fe → Fe 2 + + 2 e Since the medium is exposed to the atmosphere, it contains dissolved oxygen. Water and seawater are nearly neutral, and thus the cathodic reaction is: (Eq 15...
Abstract
This article provides an overview of the electrochemical nature of corrosion and analyzes corrosion-related failures. It describes corrosion failure analysis and discusses corrective and preventive approaches to mitigate corrosion-related failures of metals. These include: change in the environment; change in the alloy or heat treatment; change in design; use of galvanic protection; use of inhibitors; use of nonmetallic coatings and liners; application of metallic coatings; use of surface treatments, thermal spray, or other surface modifications; corrosion monitoring; and preventive maintenance.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006637
EISBN: 978-1-62708-213-6
... techniques often are used in atomic and nuclear physics to check targets for impurities, thickness, and composition, but only since the late 1960s has ion beam analysis taken hold. This has been due to the need for rapid growth of planar technology in semiconductors and the availability of compatible data...
Abstract
This article provides a detailed account of the basic concepts of Rutherford backscattering spectrometry (RBS). It begins with a description of the principles of RBS, as well as the effect of channeling in conjunction with backscattering measurements and the effect of energy loss under this condition. This is followed by a section on equipment used in RBS analysis. Channel-energy conversion, energy-depth conversion, and separation of the dechanneling background are then discussed as the main steps of RBS data analysis. The article also discusses the applications of RBS—including composition of bulk samples, thin-film composition and layer thickness, impurity profiles, damage depth profile, and surface peak—as well as the various codes developed to simulate it.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006134
EISBN: 978-1-62708-175-7
... for the automotive industry ( Ref 7 ). Porous PM materials are estimated to account for less than 2% of the overall filtration and fluid control markets, which are currently dominated by lower-cost disposable porous media. Despite the small size of the market currently served by porous PM materials, this material...
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006432
EISBN: 978-1-62708-192-4
.... Further, utilization possibilities are limited by the need for accessible sensor placement positions. Indirect approaches mainly use a medium, for example, the lubricant, to transport wear particles from the rubbing surfaces to a place where a detection device may be placed or samples taken...
Abstract
Radionuclide methods for wear measurement are used to measure wear continuously throughout a tribological experiment at a resolution of nanometers or micrograms per hour. This article presents an overview of radionuclide methods for wear measurement. It discusses complementary wear measurement methods to introduce the advantages of using radioactive isotopes (RI) for wear or corrosion measurements in comparison to other methods. The article provides information on radiation safety regulations and approaches to minimize external radiation exposure. It describes neutron activation, thin layer or surface layer activation, and ultrathin layer or recoil activation that are used to create radioactive isotopes in the samples to be tested. The article reviews the two common types of wear measurement setup configurations: the direct method and the indirect method. It concludes with a discussion on the practical application of wear measurement using radioactive isotopes.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003221
EISBN: 978-1-62708-199-3
... (a) Air pressure mm in. mm in. kPa psi 20–60 Coarse 10–13 3 8 – 1 2 300–500 12–20 205–620 30–90 40–80 Medium 10–13 3 8 – 1 2 200–350 8–14 205–620 30–90 100–200 Fine 6–13 1 4 – 1 2 200–350 8–14 205–515 30–75...
Abstract
This article discusses surface engineering of nonferrous metals including aluminum and aluminum alloys, copper and copper alloys, magnesium alloys, nickel and nickel alloys, titanium and titanium alloys, zirconium and hafnium, zinc alloys, and refractory metals and alloys. It describes various techniques to improve functional surface properties and enhance the appearance of product forms. The article discusses various cleaning and finishing techniques such as abrasive blast cleaning, polishing and buffing, barrel burnishing, chemical cleaning, pickling, etching and bright dipping, electrochemical cleaning, mechanical cleaning, and mass finishing. It also examines coating processes such as plating, anodizing, chemical conversion coating, and thermal spray, and concludes with a discussion on oxidation-resistant coatings for refractory metals.
Book
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.9781627081702
EISBN: 978-1-62708-170-2
Book Chapter
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0005585
EISBN: 978-1-62708-170-2
... cleaning in which the work is the anode. Also called reverse-current cleaning. anodic coating. A protective, decorative, or functional coating, formed by conversion of the surface of a metal in an electrolytic oxidation process. anodic etching. Method of revealing microstructure by selective dissolution...
1