1-20 of 205 Search Results for

medical polymer selection

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005676
EISBN: 978-1-62708-198-6
... polymers, including the polymerization method, how the material deforms, or molecular origin or stability. The article contains tables that list common medical polymers used in medical devices. It explains the medical polymer selection criteria and regulatory aspects of materials selection failure analysis...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005687
EISBN: 978-1-62708-198-6
... Abstract This article tabulates materials that are known to have been used in orthopaedic and/or cardiovascular medical devices. The materials are grouped as metals, ceramics and glasses, and synthetic polymers in order. These tables were compiled from the Medical Materials Database which...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005667
EISBN: 978-1-62708-198-6
... around requirements for the most extreme examples of the long-term (permanent) implantable polymer materials (polymeric biomaterials). Selection of a Suitable Polymer While there are many polymers available in the industrial marketplace, this does not mean that all of them are candidates...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005672
EISBN: 978-1-62708-198-6
... Abstract This article provides an overview of curing techniques, adhesive chemistries, surface preparation, adhesive selection, and medical applications of adhesives. The curing techniques are classified into moisture, irradiation, heat, and anaerobic. The article highlights the common types...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005686
EISBN: 978-1-62708-198-6
... Abstract This article provides a background to the biological evaluation of medical devices. It discusses what the ISO 10993 standards require for polymeric biomaterials and presents examples of qualitative and quantitative tests that can be used to satisfy these requirements. The article...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005660
EISBN: 978-1-62708-198-6
... composites dental applications drug-delivery systems endovascular devices glass knee implants medical device design metals nanomaterials natural materials neurostimulation ophthalmic applications orthopedic applications polymers stem cells total hip replacement urology THE FIELD...
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006862
EISBN: 978-1-62708-392-8
... List of existing medical devices fabricated using additive manufacturing (AM) techniques Medical devices AM techniques Materials Anatomical models Material jetting ( Ref 30 ) Vat polymerization ( Ref 32 ) Polymers ( Ref 30 , 32 ) Dental prostheses Powder-bed fusion ( Ref 33 , 34...
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006859
EISBN: 978-1-62708-392-8
... but can also process polymers and ceramics Metals (conductors) Source: Ref 17 – 20 Selective Laser Sintering Process The SLS fabrication process, depicted in Fig. 1 , uses a laser to successively sinter thin layers of powder (typically 0.1 mm, or 0.004 in., thick) that have been spread...
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006863
EISBN: 978-1-62708-392-8
... applications, the use of additive manufacturing for tissue engineering restricts materials selection for vat polymerization in the light of dimension stability, biological compatibility, and biodegradability ( Ref 122 ). To satisfy all restrictions, newly developed biodegradable polymers could be synthesized...
Book Chapter

By Matthew Donachie
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003168
EISBN: 978-1-62708-199-3
... transition temperature for polymers. The first polymeric material (Teflon) used for an acetabular cup failed because of extreme distortion due to creep. Wear resistance is also an important criterion for all biomaterials. Excessive wear can lead to premature mechanical failure of the replacement...
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.9781627083928
EISBN: 978-1-62708-392-8
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006899
EISBN: 978-1-62708-392-8
... of materials are available for dental applications: polymeric, metal-based, and ceramics. The raw materials are generally in three forms: resin, powder, and filament. The selection of material type and form is affected by several factors that depend on the applications such as biocompatibility, biosafety...
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006966
EISBN: 978-1-62708-439-0
... Description Materials Advantages Disadvantages Medical applications Powder-bed fusion (PBF) Selective laser sintering (SLS), direct metal laser sintering, laser-PBF (L-PBF) Regions of a powder bed are selectively fused via thermal energy. Thermoplastic, metal powder, ceramics L-PBF: High...
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006883
EISBN: 978-1-62708-392-8
... jetting, vat photo polymerization, binder jetting, sheet lamination, powder-bed fusion (PBF), and directed-energy deposition ( Ref 2 ). Classification of powder-based 3D printing is represented in Fig. 1 . Powder-bed processes of polymers can be performed using laser, thermal fusion, and fusing agents...
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006905
EISBN: 978-1-62708-392-8
..., the selection of materials, especially biocompatible materials, remains limited for both resins and metals in the medical field. In addition to resin and metal, biodegradable polymer materials such as polycaprolactone and biodegradable ceramics such as β-tricalcium phosphate and hydroxyapatite—as materials...
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006852
EISBN: 978-1-62708-392-8
... printer. Printing of Models There are several factors to consider when selecting a 3D printing process to create a medical model. For example, important parameters include ( Ref 6 ): Time required to complete the print Availability Cost of printer and materials Choice of materials...
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004144
EISBN: 978-1-62708-184-9
... to practical applications. The industries addressed are nuclear power, fossil and alternative fuel, land transportation, air transportation, microelectronics, chemical processing, pulp and paper, food and beverage, pharmaceutical and medical technology, petroleum and petrochemical, building, and mining...
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006882
EISBN: 978-1-62708-392-8
... printing has been a transformative technology in healthcare, shifting medical treatments from a standard one-size-fits-all to customized patient-specific treatments. Seven 3D printing primary categories classified by ASTM are ( Ref 2 ): Vat polymerization Binder jetting Powder bed fusion...
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006551
EISBN: 978-1-62708-290-7
... Abstract Material jetting (MJ) is a classification of additive manufacturing processes that involves the selective jetting and subsequent solidification of liquid droplets onto a substrate in a layerwise manner. This article focuses solely on MJ of polymers, providing a process overview...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005685
EISBN: 978-1-62708-198-6
..., and limitations of each technique are discussed ( Table 1 ). More detailed discussions of the various methods are available in the Selected References. Surface analysis techniques for evaluating medical device components Table 1 Surface analysis techniques for evaluating medical device components...