1-20 of 57 Search Results for

medical polymer selection

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005676
EISBN: 978-1-62708-198-6
... polymers, including the polymerization method, how the material deforms, or molecular origin or stability. The article contains tables that list common medical polymers used in medical devices. It describes the medical polymer selection criteria and regulatory aspects of materials selection failure...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005687
EISBN: 978-1-62708-198-6
... Abstract This article tabulates materials that are known to have been used in orthopaedic and/or cardiovascular medical devices. The materials are grouped as metals, ceramics and glasses, and synthetic polymers in order. These tables were compiled from the Medical Materials Database which is a...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005660
EISBN: 978-1-62708-198-6
... components, and from dentures to hip and knee joints ( Tables 2 , 3 ). Polymeric materials are also used for medical adhesives and sealants and for coatings that serve a variety of functions. Table 3 Examples of polymers used as biomaterials Application Polymer Knee, hip, shoulder joints...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005672
EISBN: 978-1-62708-198-6
..., adhesive selection, and medical applications for adhesives. Curing, as defined in polymer chemistry, is a cross-linking reaction between monomers, oligomers, or polymers that involves the formation of covalent bonds as linkages. However, the term cure is broadly used in the industry...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003005
EISBN: 978-1-62708-200-6
.... cemented carbides ceramic-matrix and carbon-carbon composites ceramics cermets composites computer-aided design engineering plastics ferrous alloys material properties materials selection metal-matrix composites nonferrous alloys polymer-matrix composites THE SELECTION OF ENGINEERED...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005682
EISBN: 978-1-62708-198-6
..., synthetic polymers are synthesized by polymerization and condensation techniques to form long chains of the desired shape and property ( Ref 6 ). Other synthetic materials, such as fibers and biotextiles, are prepared by melt spinning and electrospinning, while hydrogels are prepared by simply swelling...
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006478
EISBN: 978-1-62708-190-0
... Abstract This article introduces the principal methodologies and some advanced technologies that are being applied for nondestructive evaluation (NDE) of fiber-reinforced polymer-matrix composites. These include acoustic emission, ultrasonic, eddy-current, computed tomography, electromagnetic...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003045
EISBN: 978-1-62708-200-6
... medium and the material under test. The ultrasonic analyzer is then used to select a specified portion of the reflected signal for analysis. This gated portion of the total waveform is subjected to peak height analysis in which the peak output is converted into an analog voltage between 0 and 10 V, the...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005686
EISBN: 978-1-62708-198-6
... Abstract This article provides the background of biological evaluation of medical devices. It discusses what the ISO 10993 standards require for polymeric biomaterials and presents examples of what qualitative and quantitative tests can be used to satisfy the requirements. The article describes...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005685
EISBN: 978-1-62708-198-6
..., advantages, and limitations of each technique are discussed ( Table 1 ). More detailed discussions of the various methods are available in the Selected References. Table 1 Surface analysis techniques for evaluating medical device components Technique Property Advantages Limitations Light...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005678
EISBN: 978-1-62708-198-6
... simulators medical implants metals orthopedic surgery physical properties pin-on-disk experiments pin-on-plate experiments total joint replacement total replacement synovial joints tribological characteristics ultrahigh molecular weight polyethylene wear SYNOVIAL JOINTS are remarkable bearings...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005667
EISBN: 978-1-62708-198-6
... positive reasons for considering a polymer as a material of construction in a medical device. However, their unique complexity also brings with it unique considerations for assessing their biocompatibility. Polymers differ from metals or ceramics in that their synthesis relies on a polymerization reaction...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005666
EISBN: 978-1-62708-198-6
... produce larger (micrometer-sized) wear debris that is more elongated in shape (aspect ratio > 2) ( Fig. 1 , 2 ). The particles produced by metal-on-polymer bearing implants are almost exclusively polymeric. Metallic debris can be produced by metal-on-polymer articulating implants but not typically...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005655
EISBN: 978-1-62708-198-6
... classification of the different types of bioceramics, and an examination of several methods used to test the biocompatibility of ceramics. An exhaustive review of the range of ceramics in current use in medical applications is not discussed. Humans have sought to replace parts of the human body with foreign...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005670
EISBN: 978-1-62708-198-6
... precious metals is provided in Table 1 . Table 2 provides the corresponding pure metal mechanical properties, and Table 3 contains linear expansion coefficient values for the pure metals. Figures 1(a) and 1(b) examine fluctuations in the U.S. industrial demand for medical and dental usage of the...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003047
EISBN: 978-1-62708-200-6
... Abstract This article begins with an overview of the fundamentals of adhesive technology, including functions, limitations, adhesive joint types, and the key factors in the selection of adhesives, including application, type of joint, process limitation, mechanical requirement, and service...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005658
EISBN: 978-1-62708-198-6
... Abstract This article focuses on the specific aspects of nitinol that are of interest to medical device designers. It describes the physical metallurgy, physical properties, and tensile properties of the nitinol. The article discusses the factors influencing superelastic shape memory effects...
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006011
EISBN: 978-1-62708-172-6
... Abstract Polyurethane is any polymer consisting of a chain of repeating organic units joined by urethane linkages. Polyurethane polymers are formed through step-growth polymerization by making a monomer containing at least two isocyanate functional groups to react with another monomer...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003061
EISBN: 978-1-62708-200-6
... Abstract Structural applications for advanced ceramics include mineral processing equipment, machine tools, wear components, heat exchangers, automotive products, aerospace components, and medical products. This article begins with an overview of the wear-resistant applications and the...
Book Chapter

By Matthew Donachie
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003168
EISBN: 978-1-62708-199-3
... glass transition temperature for polymers. The first polymeric material (Teflon) used for an acetabular cup failed because of extreme distortion due to creep. Wear resistance is also an important criterion for all biomaterials. Excessive wear can lead to premature mechanical failure of the...