Skip Nav Destination
Close Modal
By
Shervin Foroughi, Mahdi Derayatifar, Mohsen Habibi, Muthukumaran Packirisamy
By
Matthew Bowers, Gabriel Ganot, Louis Malito, Babak Kondori, Anyanwu Ezechukwu ...
By
Carole S.L. Spake, Albert S. Woo
By
Nicholas Ury, Samad Firdosy, Vilupanur Ravi
By
David E. Albert
By
Lauren Judkins, Guha Manogharan, Richa Gupta, Lori Jia, My My Tang ...
By
Colin K. Drummond, Alia Hdeib, Fahd R. Khan
By
Anton du Plessis, Eric MacDonald
By
Matt Bulger, Paul Hauck
By
Takayoshi Nakano, Koji Hagihara
By
L. Scott Chumbley, Larry D. Hanke
By
D.J. Medlin, R. Compton
Search Results for
medical instruments
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 213
Search Results for medical instruments
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001385
EISBN: 978-1-62708-173-3
... industries. The process is also commonly used when brazing heat exchangers, bicycles, furniture, carbide tools, plumbing components, automotive subassemblies, medical instruments, and many other workpiece types. A wide range of components can be torch brazed, including small joints for jewelry parts, large...
Abstract
Torch brazing utilizes a fuel gas flame as a heat source for the brazing process. This article discusses the advantages, limitations, applications, and key techniques of torch brazing, and presents an overview of the equipment used.
Book Chapter
Developments and Trends in Additively Manufactured Medical Devices
Available to PurchaseSeries: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006902
EISBN: 978-1-62708-392-8
..., including live (tissues, cellularized scaffolds) or supporting devices (medical instruments, scaffolds, prostheses, and implants). Medical devices have more than 1700 distinct types, organized into medical specialty panels as found in Parts 862 to 892 of the Code of Federal Regulations ( Ref 3...
Abstract
Additive manufacturing (AM), or three-dimensional (3D) printing, is a class of manufacturing processes that create the desired geometries of an object, or an assembly of objects, layer by layer or volumetrically. AM has been used extensively for manufacturing medical devices, due to its versatility to satisfy the specific needs of an intended medical field for the product/device. This article provides a comprehensive review of AM in medical devices by the medical specialty panels of the Food and Drug Administration (FDA) Code of Federal Regulations, Parts 862 to 892, including anesthesiology, ear and nose, general hospital, ophthalmic, plastic surgery, radiology, cardiovascular, orthopedic, dental, neurology, gynecology, obstetrics, physical medicine, urology, toxicology, and pathology. It is classified under these panels, and critical reviews and future outlooks are provided. The application of AM to fabricate medical devices in each panel is reviewed; lastly, a comparison is provided to reveal relevant gaps in each medical field.
Book Chapter
Failure Analysis of Medical Devices
Available to PurchaseSeries: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006811
EISBN: 978-1-62708-329-4
... and Drug Administration (FDA) defines a medical device as an instrument, apparatus, implement, machine, or implant intended for use in the diagnosis, cure, mitigation, treatment, or prevention of disease that does not achieve its primary intended purposes through chemical action and is not dependent upon...
Abstract
Bearing in mind the three-legged stool approach of device design/manufacturing, patient factors, and surgical technique, this article aims to inform the failure analyst of the metallurgical and materials engineering aspects of a medical device failure investigation. It focuses on the device "failures" that include fracture, wear, and corrosion. The article first discusses failure modes of long-term orthopedic and cardiovascular implants. The article then focuses on short-term implants, typically bone screws and plates. Lastly, failure modes of surgical tools are discussed. The conclusion of this article presents several case studies illustrating the various failure modes discussed throughout.
Image
Examples of stainless steel components for medical use. Laser powder-bed fu...
Available to Purchase
in Additive Manufacturing of Stainless Steel Biomedical Devices
> Additive Manufacturing in Biomedical Applications
Published: 12 September 2022
Fig. 3 Examples of stainless steel components for medical use. Laser powder-bed fusion (LPBF)-printed additive-manufactured 316 (a) acetabular shell and (b) a cut guide customized for hip and knee replacement surgery. (c) Components postprocessed via vibratory tumbling. Source: Ref 32 . (d
More
Book Chapter
Additive Manufacturing in Medicine and Craniofacial Applications of 3D Printing
Available to PurchaseSeries: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006852
EISBN: 978-1-62708-392-8
... Medical instruments and devices, rapid prototyping, exoskeleton 250 50–400 Powder-bed fusion An additive manufacturing process in which thermal energy selectively consolidates regions of a powder bed Selective laser sintering, direct metal laser sintering, selective heat sintering, selective laser...
Abstract
This article provides highlights of the general process and workflow of creating a 3D-printed model from a medical image and discusses the applications of additively manufactured materials. It provides a brief background on Food and Drug Administration (FDA) classification and regulation of medical devices, with an emphasis on 3D-printed devices. Then, the article discusses two broad applications of 3D printing in craniofacial surgery: surgery and education. Next, it discusses, with respect to surgical applications, preoperative planning, use in the operating room, surgical guides, and implants. The article includes sections on education that focus on the use of 3D-printed surgical simulators and other tools to teach medical students and residents. It briefly touches on the FDA regulations associated with the respective application of 3D printing in medicine. Lastly, the article briefly discusses the state of medical billing and reimbursement for this service.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006906
EISBN: 978-1-62708-392-8
... Abstract Additive manufacturing (AM), or three-dimensional printing, has ushered in an era of mass customization in the many different industries in which it is used. The use of the personalized surgical instrument (PSI) is no exception. Initially, PSIs were not a result of the use of AM...
Abstract
Additive manufacturing (AM), or three-dimensional printing, has ushered in an era of mass customization in the many different industries in which it is used. The use of the personalized surgical instrument (PSI) is no exception. Initially, PSIs were not a result of the use of AM; rather, what occurred is an improvement in their methods of manufacturing. This article discusses the fundamentals, benefits, manufacturing, and other application examples beyond orthopedics of PSIs. In addition, an outlook of AM in biomedical applications is also covered.
Book Chapter
Additive Manufacturing of Stainless Steel Biomedical Devices
Available to PurchaseSeries: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006888
EISBN: 978-1-62708-392-8
... Administration (FDA), are defined in accordance with Section 201(h) of the Food, Drug, and Cosmetic Act ( Ref 1 ) as The International Organization for Standardization (ISO) provides a different definition for medical devices, as defined in UNE-EN ISO 13485 ( Ref 2 ), where a medical device is an “instrument...
Abstract
Metallic alloys that are typically used for medical purposes include stainless steels, Ti-6Al-4V, and Co-Cr-Mo. This article discusses the relative merits of each of these alloys. The utilization of stainless steels in the biomedical industry, especially in relation to the additive manufacturing (AM) process, is the main focus of this article. The characteristics of various stainless steels are described subsequently, and the categories that are of relevance to the biomedical industry are identified. The types of stainless steels covered are austenitic, ferritic, martensitic, duplex, and precipitation-hardened stainless steels. The article discusses the potential benefits of AM for biomedical devices. It describes the types of AM processes for stainless steels, namely binder jet, directed-energy deposition, and laser powder-bed fusion. The article reviews the AM of austenitic, martensitic, and PH stainless steels for biomedical applications. In addition, the challenges and obstacles to the clinical use of AM parts are covered.
Book Chapter
Material and Chemical Characterization as a Part of the Biological Evaluation of Medical Devices
Available to PurchaseSeries: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005686
EISBN: 978-1-62708-198-6
... Abstract This article provides a background to the biological evaluation of medical devices. It discusses what the ISO 10993 standards require for polymeric biomaterials and presents examples of qualitative and quantitative tests that can be used to satisfy these requirements. The article...
Abstract
This article provides a background to the biological evaluation of medical devices. It discusses what the ISO 10993 standards require for polymeric biomaterials and presents examples of qualitative and quantitative tests that can be used to satisfy these requirements. The article describes infrared (IR) and thermal analyses that are used extensively to fingerprint polymeric materials. It also presents a discussion on the chemical characterization and risk assessment of extracts. Background information on risk assessments of extracts is also included. The four basic steps that are commonly used in the risk assessment process are discussed. These include hazard identification, dose-response assessment, and exposure assessment, and risk characterization.
Book Chapter
Medical Applications of Stainless Steels
Available to PurchaseSeries: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005673
EISBN: 978-1-62708-198-6
... the strain-hardening rates of ferrite are relatively low and cold work significantly lowers ductility, the ferritic stainless steels are not often strengthened by cold work. Ferritic stainless steels find few applications in medical devices. Examples include solid handles for instruments, guide pins...
Abstract
Stainless steels are used for medical implants and surgical tools due to the excellent combination of properties, such as cost, strength, corrosion resistance, and ease of cleaning. This article describes the classifications of stainless steels, such as austenitic stainless steels, martensitic stainless steels, ferritic stainless steels, precipitation-hardening stainless steels, and duplex stainless steels. It contains a table that lists common medical device applications for stainless steels. The article discusses the physical metallurgy and physical and mechanical properties of stainless steels. Medical device considerations for stainless steels, such as fatigue strength, corrosion resistance, and passivation techniques, are reviewed. The article explains the process features of implant-grade stainless steels, including type 316L, type 316LVM, nitrogen-strengthened, ASTM F1314, ASTM F1586, ASTM F2229, and ASTM F2581 stainless steels.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005676
EISBN: 978-1-62708-198-6
... Abstract Polymers offer a wide range of choices for medical applications because of their versatility in properties and processing. This article provides an overview of polymeric materials and the characteristics that make them a unique class of materials. It describes the ways to classify...
Abstract
Polymers offer a wide range of choices for medical applications because of their versatility in properties and processing. This article provides an overview of polymeric materials and the characteristics that make them a unique class of materials. It describes the ways to classify polymers, including the polymerization method, how the material deforms, or molecular origin or stability. The article contains tables that list common medical polymers used in medical devices. It explains the medical polymer selection criteria and regulatory aspects of materials selection failure analysis and prevention. Failure analysis and prevention processes to determine the root cause of failures that arise at different stages of the product life cycle are reviewed. The article describes the mechanisms of plastic product failure analysis. It discusses the trends in the use of medical polymers, such as high-performance polymers for implants, tissue engineering, and bioresorbable polymers.
Book Chapter
Medical Applications of Additive Manufacturing
Available to PurchaseSeries: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006966
EISBN: 978-1-62708-439-0
... Européenne ) must be obtained ( Ref 57 ). The three classes of medical devices are based on the level of risk they pose to patients ( Ref 58 ). Class I devices present low risk to patients, for example, bandages, manual stethoscopes, handheld surgical instruments, and arm slings. Examples of class II...
Abstract
This article provides an overview of currently available metal AM processes for the medical industry; outlines a step-by-step review of the typical workflow for design, manufacturing, evaluation, and implantation of patient-specific AM devices; and examines the existing research trends in medical applications of AM with specific focus on metallic biomedical implants. Finally, challenges and opportunities for future developments in AM pertaining to the medical field are also explored.
Book Chapter
Applications of Medical Implant Materials
Available to PurchaseSeries: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005660
EISBN: 978-1-62708-198-6
... Abstract The biocompatibility of a material relates to its immunological response, toxicity profile, and ability to integrate with surrounding tissue without undesirable local or systemic effects on a patient. This article underscores the transformation of the medical device design ecosystem...
Abstract
The biocompatibility of a material relates to its immunological response, toxicity profile, and ability to integrate with surrounding tissue without undesirable local or systemic effects on a patient. This article underscores the transformation of the medical device design ecosystem engaged as an integral part of the device ecosystem. It discusses the applications of biomaterials, including orthopedic, cardiovascular, ophthalmic, and dental applications. The article describes four major categories of biomaterials such as metals, polymers, glass and ceramics, and composites. A discussion on natural materials, nanomaterials, and stem cells is also provided. The article concludes with examples of biomaterials applications, such as endovascular devices, knee implants, and neurostimulation.
Book Chapter
X-Ray—Radiography and Computed Tomography in Additive Manufacturing
Available to PurchaseSeries: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006974
EISBN: 978-1-62708-439-0
... and CT for various AM materials. History of X-Ray and Computed Tomography X-ray radiation was discovered in 1895 by Wilhelm Conrad Röntgen ( Ref 10 ) and was quickly adopted for medical imaging (called radiography), with hardware improvements over the years that included the development...
Abstract
X-ray radiography and computed tomography (CT) are nondestructive testing (NDT) tools particularly well suited to additive manufacturing (AM). A brief overview of NDT for AM is presented in this article, including other NDT methods, followed by identifying the key advantages and requirements for x-ray radiography and CT in AM. Less widely known applications of CT are also presented, including powder characterization, the evaluation of lattice structures, surface roughness measurements, and four-dimensional CT involving interrupted (before-after) CT scans of the same parts, or even in situ scans of the same part subjected to some processing or loading conditions. The article concludes with a discussion on the limits and some guidelines for the use of x-ray and CT for various AM materials.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005685
EISBN: 978-1-62708-198-6
... Abstract This article focuses on the modes of operation, physical basis, sample requirements, properties characterized, advantages, and limitations of the characterization methods used to evaluate the physical morphology and chemical properties of component surfaces for medical devices...
Abstract
This article focuses on the modes of operation, physical basis, sample requirements, properties characterized, advantages, and limitations of the characterization methods used to evaluate the physical morphology and chemical properties of component surfaces for medical devices. These methods include light microscopy, scanning electron microscopy, atomic force microscopy, energy-dispersive X-ray spectroscopy, Auger electron spectroscopy, secondary ion mass spectrometry, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and Raman spectroscopy.
Book Chapter
Applications for Metal Powder Injection Molding
Available to PurchaseBook: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006055
EISBN: 978-1-62708-175-7
... for different end-use markets such as electronics and telecommunications, medical, automotive, power hand tools, industries, and firearms. automotive applications electronics and telecommunications firearms medical applications metal injection molding power hand tools METAL INJECTION MOLDING...
Abstract
Metal injection molding (MIM) is a metalworking technology that has its origins as a commercial technology only dating back to the early 1970s. This article explores why the MIM is the preferred solution for many fabricated components. It illustrates the MIM components required for different end-use markets such as electronics and telecommunications, medical, automotive, power hand tools, industries, and firearms.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006859
EISBN: 978-1-62708-392-8
... complex procedures ( Ref 92 ). Using SLS, anatomical models can be fabricated to be as hard as bone, abnormalities in the skull can be accurately portrayed, and conventional surgical instruments can be used to dissect the models to educate medical students. The impact on time and costs saved from adopting...
Abstract
Powder-bed fusion (PBF) is a group of additive manufacturing (AM) processes that includes selective laser sintering, selective laser melting, and electron beam melting. This article explains the processes and parameters of PBF systems that are used for biomedical applications. It also presents the desirable properties of biomedical devices and the advantages of using PBF systems for biomedical applications.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006447
EISBN: 978-1-62708-190-0
... Inspection The need for increased accessibility for VI started in the medical sector, where doctors had to see and observe inside the human body. The first instruments that provided internal access to the human body were endoscopes, from the Greek words “ένδον” (endon), which means “inside,” and “σκοπω...
Abstract
Visual inspection (VI) is the oldest inspection technique man has used as a quality-control tool to evaluate products, assess their final form in terms of fabrication accuracy and external features based on experience, and decide on their acceptance or rejection. This article discusses the basic principles of visual inspection in terms of direct visual examination and indirect visual examination as well as advantages and limitations of visual inspection. It reviews the factors affecting the effectiveness of VI as a nondestructive testing (NDT): lighting conditions of observation, condition of surface under inspection, physical state/condition of inspector, proper training of personnel and level of expertise, and knowledge of applicable standards. The article provides schematic illustrations of rigid borescopes, fiberscopes, and videoscopes. It concludes with a discussion on automated optical inspection systems.
Book Chapter
Additive Manufacturing of Medical Devices
Available to PurchaseSeries: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006905
EISBN: 978-1-62708-392-8
..., and superelastic strain. Therefore, nickel-titanium can be found in various medical applications, such as orthopedic implants, fixtures, and surgical instruments. The control of these properties by fabricating porous structures using 3D-AM has been attempted ( Ref 45 ). Cobalt-chromium alloys are also used...
Abstract
This article provides an overview of additive manufacturing (AM) methods, the three-dimensional (3D)-AM-related market, and the medical additive manufactured applications. It focuses on the current scenario and future developments related to metal AM for medical applications. The discussion covers the benefits of using 3D-AM technology in the medical field, provides specific examples of medical devices fabricated by AM, reviews trends in metal implant development using AM, and presents future prospects for the development of novel high-performance medical devices via metal 3D-additive manufacturing.
Book Chapter
Scanning Electron Microscopy for Failure Analysis
Available to PurchaseSeries: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006769
EISBN: 978-1-62708-295-2
... on the secondary electron detector can also be varied on some instruments to obtain a highly directional BSE image (sometimes referred to as a reflected electron image). Figure 8 shows a fracture surface for a titanium alloy implantable medical device where the fracture radial ridges that mark a fracture origin...
Abstract
The scanning electron microscope (SEM) is one of the most versatile instruments for investigating the microscopic features of most solid materials. The SEM provides the user with an unparalleled ability to observe and quantify the surface of a sample. This article discusses the development of SEM technology and operating principles of basic systems of SEM. The basic systems covered include the electron optical column, signal detection and display equipment, and the vacuum system. The processes involved in the preparation of samples for observation using an SEM are described, and the application of SEM in fractography is discussed. The article covers the failure mechanisms of ductile failure, brittle failure, mixed-mode failure, and fatigue failure. Lastly, image dependence on microscope type and operating parameters is also discussed.
Book Chapter
Metallography of Biomedical Orthopedic Alloys
Available to PurchaseSeries: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003792
EISBN: 978-1-62708-177-1
... titanium alloys METALS AND ALLOYS have a diverse application in the medical field, particularly as implantable internal (in vivo) structural, load-bearing materials in devices for partial and total joint replacement, fracture fixation, and instruments. The field of metallography plays a significant...
Abstract
Metallography plays a significant role in the quality control of metals and alloys used in the manufacture of implantable surgical devices. This article provides information and data on metallographic techniques along with images showing the microstructure of biomedical orthopedic alloys, including stainless steels, cobalt-base alloys, titanium and titanium alloys, porous coatings, and emerging materials.
1