1-20 of 67 Search Results for

medical implants

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005678
EISBN: 978-1-62708-198-6
... simulators medical implants metals orthopedic surgery physical properties pin-on-disk experiments pin-on-plate experiments total joint replacement total replacement synovial joints tribological characteristics ultrahigh molecular weight polyethylene wear SYNOVIAL JOINTS are remarkable bearings...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005682
EISBN: 978-1-62708-198-6
... around the implant. Medications may not work due to the presence of an impervious fibrous layer, and the removal of the implant may be the only option. To prevent such failures, several precautions are usually taken before using an implant for a prosthesis. The first step is to evaluate the material...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005659
EISBN: 978-1-62708-198-6
... Abstract This article provides a summary of biocompatibility or biological response of metals, ceramics, and polymers used in medical implant, along with their clinical issues. The polymers include ultrahigh-molecular-weight polyethylene, nonresorbable polymer, and resorbable polymers...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005660
EISBN: 978-1-62708-198-6
... cardiovascular applications ceramics composites dental applications drug-delivery systems endovascular devices glass knee implants medical device design metals nanomaterials natural materials neurostimulation ophthalmic applications orthopedic applications polymers stem cells total hip...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005683
EISBN: 978-1-62708-198-6
... Abstract The interaction of an implant with the human body environment may result in degradation of the implant, called corrosion. This article discusses the corrosion testing of metallic implants and implant materials. The corrosion environments for medical implants are the extracellular human...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005673
EISBN: 978-1-62708-198-6
... Abstract Stainless steels are used for medical implants and surgical tools due to the excellent combination of properties, such as cost, strength, corrosion resistance, and ease of cleaning. This article describes the classifications of stainless steels, such as austenitic stainless steels...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005674
EISBN: 978-1-62708-198-6
... BIOCOMPATIBILITY, corrosion resistance, strength, and low ty of titanium for implant applications have been recognized for many years. In the early 20th century, several classes of metallic and polymeric biomaterials were adopted for use in medical applications, but most implant restorations were relatively short...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005652
EISBN: 978-1-62708-198-6
... Abstract This article discusses the mechanisms of metal and alloy biocompatibility. It provides information on early testing and experience with metals in medical device applications. The article describes the response to severe corrosion of implant and particulate materials. It provides a...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005676
EISBN: 978-1-62708-198-6
..., such as high-performance polymers for implants, tissue engineering, and bioresorbable polymers. bioresorbable polymers failure analysis high-performance polymers implants medical applications medical devices medical polymer selection medical polymers polymerization product life cycle...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005657
EISBN: 978-1-62708-198-6
... redesign. The article examines the common failure modes, such as overload, fatigue, corrosion, hydrogen embrittlement, and fretting, of medical devices. The failure analysis of orthopedic implants, such as permanent prostheses and internal fixation devices, is described. The article reviews the failure...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005679
EISBN: 978-1-62708-198-6
... local effects after implantation ISO 10993-7 Ethylene oxide sterilization residuals ISO 10993-8 Withdrawn: Clinical investigation of medical devices ISO 10993-9 Evaluation of biodegradation of medical devices ISO 10993-10 Tests for irritation and sensitization ISO 10993-11 Tests for...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005687
EISBN: 978-1-62708-198-6
... Abstract This article tabulates materials that are known to have been used in orthopaedic and/or cardiovascular medical devices. The materials are grouped as metals, ceramics and glasses, and synthetic polymers in order. These tables were compiled from the Medical Materials Database which is a...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005680
EISBN: 978-1-62708-198-6
... used in medical device applications, including pacemaker and nitinol microscopic forceps. fabrication joint design laser welding medical devices microjoining microresistance spot welding nitinol microscopic forceps pacemaker radioactive seed implant MICROJOINING METHODS are commonly...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005686
EISBN: 978-1-62708-198-6
... assessment of the safety of an implant device and to estimate the upper limits of the chemicals that could be released to the patient. Some potential extractables from medical device materials are water soluble, while others are soluble only in nonpolar environments. For materials that will contact body...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005672
EISBN: 978-1-62708-198-6
... Abstract This article provides an overview of curing techniques, adhesive chemistries, surface preparation, adhesive selection, and medical applications for adhesives. The curing techniques are classified into moisture, irradiation, heat, and anaerobic. The article highlights the common types...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005666
EISBN: 978-1-62708-198-6
... Abstract This article addresses the biologic aspects of implant debris both locally and systemically. It discusses the particulate debris, such as stainless steel, cobalt alloy, and titanium alloy, and soluble debris obtained due to wear from all orthopedic implants. Implant debris is known to...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005655
EISBN: 978-1-62708-198-6
... materials for at least 2000 years. However, the success of early artificial implants was limited until the mid- to late-19th century, when medical advances improved the potential success rate of implants. Since then, a wide variety of materials, known as biomaterials, have been developed to restore function...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005670
EISBN: 978-1-62708-198-6
... restorations and implants are covered in this work. The following paragraphs provide some general physical and mechanical properties of the individual pure noble and precious metals that are particularly relevant to biomedical applications. A composite table of the physical properties of the pure noble and...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003061
EISBN: 978-1-62708-200-6
... Abstract Structural applications for advanced ceramics include mineral processing equipment, machine tools, wear components, heat exchangers, automotive products, aerospace components, and medical products. This article begins with an overview of the wear-resistant applications and the...
Book Chapter

By Sam Nasser
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005684
EISBN: 978-1-62708-198-6
... in nearly every aspect of medical electronics, both in extracorporeal applications as well as implantable devices such as cardiac pacemakers, cochlear implants, and nerve stimulators. Outside of medical electronics, tantalum is used in small quantities for implantable radiographic markers...