Skip Nav Destination
Close Modal
Search Results for
medical implants
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 209 Search Results for
medical implants
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005678
EISBN: 978-1-62708-198-6
... simulators medical implants metals orthopedic surgery physical properties pin-on-disk experiments pin-on-plate experiments total joint replacement total replacement synovial joints tribological characteristics ultrahigh molecular weight polyethylene wear SYNOVIAL JOINTS are remarkable...
Abstract
Total joint replacement in orthopedic surgery can be achieved by excision, interposition, and replacement arthroplasty. This article details the most common materials used in total replacement synovial joints: metals, ceramics, and ultrahigh molecular weight polyethylene (UHMWPE). The principal physical properties and tribological characteristics of these materials are summarized. The article discusses pin-on-disk experiments and pin-on-plate experiments for determining friction and wear characteristics. It explains the use of various types of joint simulators, such as hip joint simulators and knee joint simulators, to evaluate the performance of engineering tribological components in machine simulators. The article concludes with a section on the in vivo assessment of total joint replacement performance.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006404
EISBN: 978-1-62708-192-4
... of tribological pairs, namely, hip-wear simulation standards, knee-wear simulation standards, and spinal disc-wear simulation standards. friction wear medical implants prosthetic devices amphiarthosis joints diarthosis joints mechanical stability nonconstrained knee replacement semiconstrained knee...
Abstract
The human internal environment plays a vital role in the friction and wear of implants and prosthetic devices. This article describes the tribological/wear behavior of implants. It discusses the classification of active tribological pairs, namely, amphiarthosis joints and diarthosis joints. The article details the classification of total knee replacement, depending on the type of mechanical stability, including nonconstrained knee replacement, semiconstrained knee replacement, and constrained knee replacement. It also discusses the classifications of passive tribological pairs, namely, total disc replacement in the spine, dental implants, and temporomandibular joint. It describes the various testing methods for characterizing the implant materials used in hip, knee, spine, and dental applications. The article also describes the typical standards used for testing wear behavior of tribological pairs, namely, hip-wear simulation standards, knee-wear simulation standards, and spinal disc-wear simulation standards.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005682
EISBN: 978-1-62708-198-6
... biocompatibility issues of all implant materials. The terms biodegradatio n, bioerosion , bioabsorption , and bioresorption are all loosely coined in the medical world to indicate that the implant device would eventually disappear after being introduced into the body ( Ref 6 ). The successful use...
Abstract
This article outlines the selection criteria for choosing an implant material for biomedical devices in orthopedic, dental, soft-tissue, and cardiovascular applications. It details the development of various implants, such as metallic, ceramic, and polymeric implants. The article discusses specific problems associated with implant manufacturing processes and the consequent compromises in the properties of functionally graded implants. It describes the manufacturing of the functionally-graded hip implant by using the LENS process. The article reviews four different types of tissue responses to the biomaterial. It discusses the testing methods of implant failure, such as in vitro and in vivo assessment of tissue compatibility.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005659
EISBN: 978-1-62708-198-6
... Abstract This article provides a summary of the biocompatibility or biological response of metals, ceramics, and polymers used in medical implants, along with their clinical issues. The polymers include ultrahigh-molecular-weight polyethylene, nonresorbable polymer, and resorbable polymers...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005660
EISBN: 978-1-62708-198-6
... composites dental applications drug-delivery systems endovascular devices glass knee implants medical device design metals nanomaterials natural materials neurostimulation ophthalmic applications orthopedic applications polymers stem cells total hip replacement urology THE FIELD...
Abstract
The biocompatibility of a material relates to its immunological response, toxicity profile, and ability to integrate with surrounding tissue without undesirable local or systemic effects on a patient. This article underscores the transformation of the medical device design ecosystem engaged as an integral part of the device ecosystem. It discusses the applications of biomaterials, including orthopedic, cardiovascular, ophthalmic, and dental applications. The article describes four major categories of biomaterials such as metals, polymers, glass and ceramics, and composites. A discussion on natural materials, nanomaterials, and stem cells is also provided. The article concludes with examples of biomaterials applications, such as endovascular devices, knee implants, and neurostimulation.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005683
EISBN: 978-1-62708-198-6
... Abstract The interaction of an implant with the human body environment may result in degradation of the implant, called corrosion. This article discusses the corrosion testing of metallic implants and implant materials. The corrosion environments for medical implants are the extracellular human...
Abstract
The interaction of an implant with the human body environment may result in degradation of the implant, called corrosion. This article discusses the corrosion testing of metallic implants and implant materials. The corrosion environments for medical implants are the extracellular human body fluids, very complex solutions containing electrolytes and nonelectrolytes, inorganic and organic constituents, and gases. The article describes the fundamentals of electrochemical corrosion testing and provides a brief discussion on various types of corrosion tests. It illustrates corrosion current density determination by Tafel extrapolation, potentiodynamic measurement of the polarization resistance, electrochemical impedance measurement, and potentiostatic deaeration. Tests combining corrosion and mechanical forces, such as fretting corrosion tests, environment-assisted cracking tests, and ion-leaching tests are also discussed.
Book Chapter
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005673
EISBN: 978-1-62708-198-6
... Abstract Stainless steels are used for medical implants and surgical tools due to the excellent combination of properties, such as cost, strength, corrosion resistance, and ease of cleaning. This article describes the classifications of stainless steels, such as austenitic stainless steels...
Abstract
Stainless steels are used for medical implants and surgical tools due to the excellent combination of properties, such as cost, strength, corrosion resistance, and ease of cleaning. This article describes the classifications of stainless steels, such as austenitic stainless steels, martensitic stainless steels, ferritic stainless steels, precipitation-hardening stainless steels, and duplex stainless steels. It contains a table that lists common medical device applications for stainless steels. The article discusses the physical metallurgy and physical and mechanical properties of stainless steels. Medical device considerations for stainless steels, such as fatigue strength, corrosion resistance, and passivation techniques, are reviewed. The article explains the process features of implant-grade stainless steels, including type 316L, type 316LVM, nitrogen-strengthened, ASTM F1314, ASTM F1586, ASTM F2229, and ASTM F2581 stainless steels.
Image
Published: 01 January 2002
Fig. 39 Crystallographic fatigue in fracture mechanics specimen of cast Co-Cr-Mo-C medical implant alloy. SEM views located (a) 0.025 mm (0.001 in.) from machined notch tip, and (b) 7.6 mm (0.3 in.) from notch tip. Fatigue striations were not resolvable at any location, and the entire fatigue
More
Image
Published: 15 January 2021
Fig. 39 Crystallographic fatigue in fracture mechanics specimen of cast Co-Cr-Mo-C medical implant alloy. Scanning electron microscope views located (a) 0.025 mm (0.001 in.) from machined notch tip and (b) 7.6 mm (0.3 in.) from notch tip. Fatigue striations were not resolvable at any location
More
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003792
EISBN: 978-1-62708-177-1
... titanium alloys METALS AND ALLOYS have a diverse application in the medical field, particularly as implantable internal (in vivo) structural, load-bearing materials in devices for partial and total joint replacement, fracture fixation, and instruments. The field of metallography plays a significant...
Abstract
Metallography plays a significant role in the quality control of metals and alloys used in the manufacture of implantable surgical devices. This article provides information and data on metallographic techniques along with images showing the microstructure of biomedical orthopedic alloys, including stainless steels, cobalt-base alloys, titanium and titanium alloys, porous coatings, and emerging materials.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006357
EISBN: 978-1-62708-192-4
... implants being placed inside human bodies, a good understanding of how the human internal environment could influence the wear characteristics of these implants is needed. Therefore, a new article on this aspect of wear, “Biotribology of Medical Implants” , is introduced. It is hoped that the additional...
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006966
EISBN: 978-1-62708-439-0
... Abstract This article provides an overview of currently available metal AM processes for the medical industry; outlines a step-by-step review of the typical workflow for design, manufacturing, evaluation, and implantation of patient-specific AM devices; and examines the existing research trends...
Abstract
This article provides an overview of currently available metal AM processes for the medical industry; outlines a step-by-step review of the typical workflow for design, manufacturing, evaluation, and implantation of patient-specific AM devices; and examines the existing research trends in medical applications of AM with specific focus on metallic biomedical implants. Finally, challenges and opportunities for future developments in AM pertaining to the medical field are also explored.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004205
EISBN: 978-1-62708-184-9
... Abstract In the field of medical device development and testing, the corrosion of metallic parts can lead to significant adverse effects on the biocompatibility of the device. This article describes the mechanisms of metal and alloy biocompatibility. It reviews the response of implant metals...
Abstract
In the field of medical device development and testing, the corrosion of metallic parts can lead to significant adverse effects on the biocompatibility of the device. This article describes the mechanisms of metal and alloy biocompatibility. It reviews the response of implant metals and particulate materials to corrosion. The effect of metal ions from an implanted device on the human body is also discussed. The article concludes with information on the possible cancer-causing effects of metallic biomaterials.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006905
EISBN: 978-1-62708-392-8
.... The discussion covers the benefits of using 3D-AM technology in the medical field, provides specific examples of medical devices fabricated by AM, reviews trends in metal implant development using AM, and presents future prospects for the development of novel high-performance medical devices via metal 3D...
Abstract
This article provides an overview of additive manufacturing (AM) methods, the three-dimensional (3D)-AM-related market, and the medical additive manufactured applications. It focuses on the current scenario and future developments related to metal AM for medical applications. The discussion covers the benefits of using 3D-AM technology in the medical field, provides specific examples of medical devices fabricated by AM, reviews trends in metal implant development using AM, and presents future prospects for the development of novel high-performance medical devices via metal 3D-additive manufacturing.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003168
EISBN: 978-1-62708-199-3
... techniques, and their mechanical properties can be controlled over a wide range for optimum strength and ductility. Stainless steels are used as wrought alloys. Passivity of stainless steel implants is enhanced by nitric acid passivation before the implant is sterilized and packaged for delivery to a medical...
Abstract
Biomaterials are the man-made metallic, ceramic, and polymeric materials used for intracorporeal applications in the human body. This article primarily focuses on metallic materials. It provides information on basic metallurgy, biocompatibility, chemistry, and the orthopedic and dental applications of metallic biomaterials. A table compares the mechanical properties of some common implant materials with those of bone. The article also provides information on coatings, ceramics, polymers, composites, cements, and adhesives, especially where they interact with metallic materials.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006908
EISBN: 978-1-62708-392-8
... and Manufacturing Considerations of 3D-Printed, Commercially Pure Titanium and Titanium Alloy-Based Orthopedic Implants" and "Device Testing Considerations Following FDA Guidance" for additive-manufactured medical devices. These are further subdivided into five major focus areas: materials; design, printing...
Abstract
Additive manufacturing, or three-dimensional printing technologies, for biomedical applications is rather different from other engineering components, particularly for biomedical implants that are intended to be used within the human body. This article contains two sections: "Design and Manufacturing Considerations of 3D-Printed, Commercially Pure Titanium and Titanium Alloy-Based Orthopedic Implants" and "Device Testing Considerations Following FDA Guidance" for additive-manufactured medical devices. These are further subdivided into five major focus areas: materials; design, printing, printing characteristics and parameters as well as postprinting validation; removal of the many manufacturing material residues and sterilization; physical, chemical, and mechanical assessments of the final devices; and biological considerations of all the final devices including biocompatibility.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005335
EISBN: 978-1-62708-187-0
..., such as fuel nozzles and vanes for industrial gas turbines. Cast Co-Cr-Mo alloys compete directly with titanium and cobalt forgings for medical prosthetic implant devices. Cast cobalt-base “hard alloys” (e.g., Co-WC cemented carbide) are often found in applications involving severe wear conditions. Cobalt...
Abstract
This article discusses the physical metallurgy of cast cobalt alloys with an emphasis on the crystallography, compositions, phases and microstructure, and properties. Cobalt alloys are cast by several different foundry methods. The article describes the argon-oxygen decarburization and continuous casting process. It provides information on castability and quality of the casted alloys. The article details the postcasting treatment, including heat treatment, hot isostatic pressing, and coatings. It summarizes the applications of cast cobalt alloys.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005652
EISBN: 978-1-62708-198-6
... Abstract This article discusses the mechanisms of metal and alloy biocompatibility. It provides information on early testing and experience with metals in medical device applications. The article describes the response of implant and particulate materials to severe corrosion. It provides...
Abstract
This article discusses the mechanisms of metal and alloy biocompatibility. It provides information on early testing and experience with metals in medical device applications. The article describes the response of implant and particulate materials to severe corrosion. It provides a description of metal binding and its effects on metabolic processes. Hypersensitive responses to metal ions are also reviewed. The article concludes with a discussion on the possible cancer-causing effects of metallic biomaterials.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005676
EISBN: 978-1-62708-198-6
...-performance polymers for implants, tissue engineering, and bioresorbable polymers. bioresorbable polymers failure analysis high-performance polymers implants medical applications medical devices medical polymer selection medical polymers polymerization product life cycle tissue engineering...
Abstract
Polymers offer a wide range of choices for medical applications because of their versatility in properties and processing. This article provides an overview of polymeric materials and the characteristics that make them a unique class of materials. It describes the ways to classify polymers, including the polymerization method, how the material deforms, or molecular origin or stability. The article contains tables that list common medical polymers used in medical devices. It explains the medical polymer selection criteria and regulatory aspects of materials selection failure analysis and prevention. Failure analysis and prevention processes to determine the root cause of failures that arise at different stages of the product life cycle are reviewed. The article describes the mechanisms of plastic product failure analysis. It discusses the trends in the use of medical polymers, such as high-performance polymers for implants, tissue engineering, and bioresorbable polymers.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006811
EISBN: 978-1-62708-329-4
... and Drug Administration (FDA) defines a medical device as an instrument, apparatus, implement, machine, or implant intended for use in the diagnosis, cure, mitigation, treatment, or prevention of disease that does not achieve its primary intended purposes through chemical action and is not dependent upon...
Abstract
Bearing in mind the three-legged stool approach of device design/manufacturing, patient factors, and surgical technique, this article aims to inform the failure analyst of the metallurgical and materials engineering aspects of a medical device failure investigation. It focuses on the device "failures" that include fracture, wear, and corrosion. The article first discusses failure modes of long-term orthopedic and cardiovascular implants. The article then focuses on short-term implants, typically bone screws and plates. Lastly, failure modes of surgical tools are discussed. The conclusion of this article presents several case studies illustrating the various failure modes discussed throughout.
1