1-20 of 656 Search Results for

medical devices

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005652
EISBN: 978-1-62708-198-6
... Abstract This article discusses the mechanisms of metal and alloy biocompatibility. It provides information on early testing and experience with metals in medical device applications. The article describes the response of implant and particulate materials to severe corrosion. It provides...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005679
EISBN: 978-1-62708-198-6
... Abstract This article contains a table that lists the ISO standards for the biological evaluation of medical devices. biological evaluation medical devices List of ISO Standards for Biological Evaluation of Medical Devices (<xref rid="a0005679-ref1" ref-type="bibr">Ref 1...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005685
EISBN: 978-1-62708-198-6
... Abstract This article focuses on the modes of operation, physical basis, sample requirements, properties characterized, advantages, and limitations of the characterization methods used to evaluate the physical morphology and chemical properties of component surfaces for medical devices...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005683
EISBN: 978-1-62708-198-6
..., and ion-leaching tests are also discussed. corrosion current density corrosion testing electrochemical corrosion testing electrochemical impedance measurement environment-assisted cracking tests fretting corrosion tests galvanic corrosion tests ion-leaching tests medical devices metallic...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005686
EISBN: 978-1-62708-198-6
... Abstract This article provides a background to the biological evaluation of medical devices. It discusses what the ISO 10993 standards require for polymeric biomaterials and presents examples of qualitative and quantitative tests that can be used to satisfy these requirements. The article...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.9781627081986
EISBN: 978-1-62708-198-6
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006811
EISBN: 978-1-62708-329-4
... Abstract Bearing in mind the three-legged stool approach of device design/manufacturing, patient factors, and surgical technique, this article aims to inform the failure analyst of the metallurgical and materials engineering aspects of a medical device failure investigation. It focuses...
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006862
EISBN: 978-1-62708-392-8
... the different critical material aspects of additively manufactured medical devices, beginning with the preprinting phase (material consistency and recycling), the printing phase (build orientation), and the postprinting phase (part evaluation, biocompatibility, and sterilization) with supporting materials...
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006902
EISBN: 978-1-62708-392-8
... Abstract Additive manufacturing (AM), or three-dimensional (3D) printing, is a class of manufacturing processes that create the desired geometries of an object, or an assembly of objects, layer by layer or volumetrically. AM has been used extensively for manufacturing medical devices, due...
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006905
EISBN: 978-1-62708-392-8
.... The discussion covers the benefits of using 3D-AM technology in the medical field, provides specific examples of medical devices fabricated by AM, reviews trends in metal implant development using AM, and presents future prospects for the development of novel high-performance medical devices via metal 3D...
Image
Published: 12 September 2022
Fig. 13 Classification and certification approach for medical devices based on materials, processing, and part quality. AM, additive manufacturing. Reprinted from Ref 87 with permission from Elsevier More
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005680
EISBN: 978-1-62708-198-6
... Abstract Microjoining methods are commonly used to fabricate medical components and devices. This article describes key challenges involved during microjoining of medical device components. The primary mechanisms used in microjoining for medical device applications include microresistance spot...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005687
EISBN: 978-1-62708-198-6
... Abstract This article tabulates materials that are known to have been used in orthopaedic and/or cardiovascular medical devices. The materials are grouped as metals, ceramics and glasses, and synthetic polymers in order. These tables were compiled from the Medical Materials Database which...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005657
EISBN: 978-1-62708-198-6
... Abstract This article focuses on the analysis of materials and mechanical- (or biomechanical-) based medical device failures. It reviews the failure analysis practices, including evidence receipt, cleaning, nondestructive examination, destructive examination, exemplars analysis, and device...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005678
EISBN: 978-1-62708-198-6
... simulators medical implants metals orthopedic surgery physical properties pin-on-disk experiments pin-on-plate experiments total joint replacement total replacement synovial joints tribological characteristics ultrahigh molecular weight polyethylene wear SYNOVIAL JOINTS are remarkable...
Image
Published: 01 January 2002
Fig. 9 Fracture in a thin medical device manufactured from type D 2 tool steel. (a) View showing a fractured massive carbide and associated matrix crack. Scanning electron micrograph. 1187× (b) Cross section through a cracked region in a similar part showing brittle fracture in the carbides More
Image
Published: 01 June 2012
Fig. 1 Categorization of medical device technology More
Image
Published: 15 January 2021
Fig. 8 Fatigue fracture in a grade 2 titanium medical device. (a) Typical secondary electron image. (b) Additional surface detail in a reflected backscattered electron image obtained with the bias disabled on the secondary electron collector More
Image
Published: 15 January 2021
Fig. 9 Fracture in a thin medical device manufactured from type D2 tool steel. (a) View showing a fractured massive carbide and associated matrix crack. Scanning electron micrograph. Original magnification: 1187×. (b) Cross section through a cracked region in a similar part showing brittle More
Image
Published: 30 August 2021
Fig. 1 Timeline of medical device milestones (top) and United States Food and Drug Administration (FDA) medical device regulation (bottom) More