Skip Nav Destination
Close Modal
Search Results for
mechanistic material model
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 143
Search Results for mechanistic material model
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005438
EISBN: 978-1-62708-196-2
... Abstract This article provides guidelines for the assessment of model quality in materials science and engineering. It discusses the fundamentals of model quality assessment and the calibration of mechanistic material models. The article reviews the considerations for the model verification...
Abstract
This article provides guidelines for the assessment of model quality in materials science and engineering. It discusses the fundamentals of model quality assessment and the calibration of mechanistic material models. The article reviews the considerations for the model verification during software implementation planning to identify suitable programs, software components, and programming languages. It describes the validity tests used in model validation, including boundary-value tests, degenerate problem tests, sensitivity tests, and benchmarking. The article also presents an example of model calibration, verification, and validation for the prediction of martensite start temperature of steels.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003642
EISBN: 978-1-62708-182-5
... Abstract Corrosion modeling is an essential benchmarking element for the selection and life prediction associated with the introduction of new materials or processes. These models are most naturally expressed in terms of differential equations or in other nonexplicit forms of mathematics...
Abstract
Corrosion modeling is an essential benchmarking element for the selection and life prediction associated with the introduction of new materials or processes. These models are most naturally expressed in terms of differential equations or in other nonexplicit forms of mathematics. This article discusses the principles and applications of various models developed for understanding the corrosion mechanism. These models include mechanistic models, including Pourbaix model, thermophysical module, electrochemical module, and ion association model; risk-based models; and knowledge models. The risk-based model and knowledge models are illustrated with examples for better understanding. The article also describes boundary-element modeling and pitting corrosion fatigue models.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005537
EISBN: 978-1-62708-197-9
... Abstract Modeling will help reduce machining problems and thereby enable more rapid introduction of high-performance materials and components. This article discusses the technical needs of aircraft engine and airframe structural components and modeling of heat-treat-induced residual stress...
Abstract
Modeling will help reduce machining problems and thereby enable more rapid introduction of high-performance materials and components. This article discusses the technical needs of aircraft engine and airframe structural components and modeling of heat-treat-induced residual stress by finite-element residual-stress analysis. It describes the two-dimensional (2-D) and three-dimensional (3-D) procedures involved in finite-element residual-stress analysis. The article deals with the 2-D and 3-D machining distortion validation on engine-disk-type components. It describes methods for obtaining machining-induced residual stresses, including detailed finite-element analysis of the cutting process, the simple fast-acting mechanistic model, and the semi-empirical linear stress model. The article concludes with information on the modeling benefits and implementation of modeling in a production environment.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005425
EISBN: 978-1-62708-196-2
..., which can be grouped broadly into three classes: statistical, phenomenological, and mechanistic models. The article also presents an overview of the potential directions for the modeling of metals processing. material behavior model statistical model phenomenological model mechanistic model...
Abstract
This article provides a brief historical perspective, a classification of metallurgical processes, basic model development efforts, and an overview of the potential future directions for the modeling of metals processing. It describes the classification of material behavior models, which can be grouped broadly into three classes: statistical, phenomenological, and mechanistic models. The article also presents an overview of the potential directions for the modeling of metals processing.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002482
EISBN: 978-1-62708-194-8
... manufacturing process modeling mechanistic models off-line models on-line models MANUFACTURING PROCESSES typically involve the reshaping of materials from one form to another under a set of processing conditions. To minimize the production cost and shorten the time to market for the product, all...
Abstract
Manufacturing processes typically involve the reshaping of materials from one form to another under a set of processing conditions. This article discusses the two classification schemes of modeling for manufacturing processes, namely, on-line or off-line models and empirical, mechanistic, or deterministic models along with their important considerations. It describes the various aspects of modeling of deformation processes, casting operations, and fusion welding processes, with examples.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003382
EISBN: 978-1-62708-195-5
... was characterized in a ten- year study of laboratory coupons as well as a fifteen-year study of in-service flight exposure of helicopter structures. Life Prediction Models For purposes of this review, fatigue models for composite materials under cyclic loading are classified broadly as either mechanistic...
Abstract
In the design of composite structures for durability and damage tolerance, the primary concerns are out-of-plane failures, such as delamination, material degradation associated with environment, stability under compression loading, large degree of scatter in fatigue life, and bearing failure of joints. This article presents an introductory discussion on the fatigue damage process, methodologies assessing fatigue behavior, and life prediction models. It describes the damage mechanisms introduced for a quasi-isotropic laminate under tension-compression fatigue loading. Delamination is a critical issue in fatigue and generally results from high interlaminar normal and shear stresses. The article schematically illustrates the structural elements in which high interlaminar stresses are common. It concludes with a discussion on the classification of fatigue models such as mechanistic or phenomenological, for composite materials under cyclic loading.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003638
EISBN: 978-1-62708-182-5
... for the corrosionist. Properly designed and planned experiments can reduce the number of experiments and produce data that are subjected to statistical analysis. Statistically significant data can then be used to develop mechanistic- and knowledge-based models that are used, for example, as critical elements in life...
Abstract
This article provides a summary of the concepts discussed in the article under the section "Corrosion Testing and Evaluation" in ASM Handbook, Volume 13A: Corrosion: Fundamentals, Testing, and Protection. This section presents fundamental information on step-by-step instructions for techniques, examples of actual test data, and hints to help in interpretation. The topics covered include planning corrosion tests and evaluating results, laboratory corrosion testing, simulated service corrosion testing, in-service techniques for damage detection and monitoring, and evaluating forms of corrosion.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005544
EISBN: 978-1-62708-197-9
... of mixed character can be handled, for example, equilibria involving the interaction between liquid and solid alloys and matte, slag, and gas phases. National Physical Laboratory, U.K. www.npl.co.uk/advanced-materials/measurement-techniques/modelling/mtdata Pandat Pandat software is an integrated...
Abstract
This article demonstrates the depth and breadth of commercial and third-party software packages available to simulate metals processes. It provides a representation of the spectrum of applications from simulation of atomic-level effects to manufacturing optimization. The article tabulates the software name, function or process applications, vendor or developer, and website information.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003379
EISBN: 978-1-62708-195-5
..., or one must use a more comprehensive theory that properly represents matrix failures if there is no simple design solution available. It should be noted that these particular empirical failure models are 100% mechanistic, so their capabilities and limitations are easily established. What must be avoided...
Abstract
This article presents a comprehendable and comprehensive physics-based approach for characterizing the strength of fiber-reinforced polymer composites. It begins with background information on the goals and attributes of this method. The article then addresses the characterization of fiber failures in laminates, because these are at the highest strengths that can be attained and, therefore, are usually the design objective. An exception would be if the design goal is to maximize energy absorption, rather than static strength. The discussion proceeds to situations in which the matrix fails first, either by intent, by design error, or because of impact damage. The state of the modeling propagation and arrest of matrix damage follows. Comparisons of this physics-based approach are then made to empirically based failure theories.
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006970
EISBN: 978-1-62708-439-0
... approach implementing mechanistic, physics-based models to predict and leverage the relationships between material processing, microstructure, and properties offers both reduced time and cost to reach an optimized alloy composition for the target performance and end use. The computational models, embedded...
Abstract
Additive manufacturing (AM) has gained increased significance and has been adopted across many industries for various applications. Specific net-shape AM fabrication methods, such as laser powder-bed fusion (LPBF), have matured significantly, leading to aerospace sector R&D focused on the feasibility of using flagship alloys to manufacture complex components. This article presents one example of an aluminum alloy design tailored for laser powder-bed fusion AM. It discusses the integrated computational materials engineering design approach. The article also presents the design for high-strength, high-temperature aluminum alloys.
Book Chapter
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005816
EISBN: 978-1-62708-165-8
... velocity and subcooling and to decrease with the distnace from the stagnation point. Modeling of Jet Cooling Modeling of jet cooling includes global and mechanistic forms. Global Modeling Most of the work cited in the previous two sections involved the development of an empirical correlation...
Abstract
Spray quenching refers to a wide variety of quenching processes that involve heat removal facilitated by the impingement of a quenchant medium on a hot metal surface. This article provides information on the basic concepts of spray quenching, and discusses the most commonly used techniques in quench tank agitation to establish uniformity of the quenched part. Common techniques include quenchant stirring, quenchant circulation, and submerged jet/spray mixing. The article also describes the effect of quenching agitation and reviews heat-transfer characteristics of immersion quenching and spray quenching with water.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006918
EISBN: 978-1-62708-395-9
... micromechanisms in metallic-ceramic composites and certain biological materials ( Ref 66 – 68 ). For this article, the authors chose to include mechanistic images for HDPE, ultrahigh-molecular-weight polyethylene, nylon 6,6, polycarbonate, and polypropylene. These common engineering polymers represent various...
Abstract
This article reviews generalized test methodologies for fatigue characterization of polymers and examines fatigue fracture mechanisms in different engineering plastics. It provides detailed micromechanistic images of crack-tip processes for a variety of semicrystalline and amorphous engineering polymers. The article describes fracture mechanics solutions and approaches to the fatigue characterization of engineering polymers when dealing with macroscale fatigue crack growth. It includes mechanistic images for high-density polyethylene, ultrahigh-molecular-weight polyethylene, nylon 6, 6, polycarbonate, and polypropylene. The article describes the micromechanisms of toughening of plastics and uses a macroscale approach of applying fracture mechanics to the fatigue life prediction of engineering polymers, building on the mechanistic concepts. It also describes the factors affecting fatigue performance of polymers.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003577
EISBN: 978-1-62708-182-5
... for identifying corrosion mechanisms (a significant achievement by itself), but also for preventing corrosion by appropriate corrosion protection means and for predicting the corrosion behavior of metallic materials in service conditions. Understanding the mechanisms of corrosion is the key to the development...
Abstract
This article provides a summary of the concepts discussed in the articles under the Section “Fundamentals of Corrosion” in ASM Handbook, Volume 13A: Corrosion: Fundamentals, Testing, and Protection. In this section, the thermodynamic aspects of corrosion are descried first followed by a group of articles discussing the fundamentals of aqueous corrosion kinetics. The fundamentals of gaseous corrosion are addressed next. The fundamental electrochemical reactions of corrosion and their uses are finally described.
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006990
EISBN: 978-1-62708-439-0
... parameters, and build geometry all impact the material structure formation. Structure is broadly interpreted to include microstructural features, porosity, and surface topography. Overarching connections are drawn for mechanistic relationships that are specific to the often-unique structures...
Abstract
Structure-property relationships for metal additive manufacturing (AM) using solidification-based AM processes (e.g., powder-bed fusion and directed-energy deposition) are the focus of this article. Static strength and ductility properties in AM materials are impacted heavily by the microstructure but are also affected by porosity and surface roughness. Fatigue failure in AM materials is also influenced by porosity, surface roughness, microstructure, and residual stress due to applied manufacturing processing parameters. Post-processing treatments can further influence fatigue failure in AM materials.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002476
EISBN: 978-1-62708-194-8
... the grain size of the material, then the phenomenological models discussed above may be more appropriate than the mechanistic models. Parameter Estimation As indicated earlier, the distribution of choice for characterizing the tensile strength of brittle materials is the Weibull distribution. One...
Abstract
Brittle materials, such as ceramics, intermetallics, and graphites, are increasingly being used in the fabrication of lightweight components. This article focuses on the design methodologies and characterization of certain material properties. It describes the fundamental concepts and models associated with performing time-independent and time-dependent reliability analyses for brittle materials exhibiting scatter in ultimate strength. The article discusses the two-parameter and three-parameter Weibull distribution for representing the underlying probability density function for tensile strength. It reviews life prediction reliability models used for predicting the life of a component with complex geometry and loading. The article outlines reliability algorithms and presents several applications to illustrate the utilization of these reliability algorithms in structural applications.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005427
EISBN: 978-1-62708-196-2
... Abstract Integrated computational materials engineering refers to the use of computer simulations that integrate mathematical models of complex metallurgical processes with computer models used in component and process design. This article outlines an example of a computer-aided engineering...
Abstract
Integrated computational materials engineering refers to the use of computer simulations that integrate mathematical models of complex metallurgical processes with computer models used in component and process design. This article outlines an example of a computer-aided engineering tool, such as virtual aluminum castings (VAC), developed and implemented for quickly developing durable cast aluminum power train components. It describes the procedures for the model development of the VAC system. These procedures include linking the manufacturing process to microstructure, linking microstructures to mechanical properties, linking material properties to performance prediction, and model validation and integration into the engineering process. The article discusses the benefits of the VAC system in process selection, process optimization, and improving the component design criteria.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003633
EISBN: 978-1-62708-182-5
... of SCC. It describes the phenomenological and mechanistic aspects of the initiation and propagation of SCC. The article includes a phenomenological description of crack initiation and propagation that describes well-established experimental evidence and observations of stress corrosion. Discussions...
Abstract
Stress-corrosion cracking (SCC) is a phenomenon in which time-dependent crack growth occurs when the necessary electrochemical, mechanical, and metallurgical conditions exist. This article provides an overview of the environmental phenomenon, mechanisms, and controlling parameters of SCC. It describes the phenomenological and mechanistic aspects of the initiation and propagation of SCC. The article includes a phenomenological description of crack initiation and propagation that describes well-established experimental evidence and observations of stress corrosion. Discussions on mechanisms describe the physical process involved in crack initiation and propagation. The article also includes information on dissolution models and mechanical fracture models.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005433
EISBN: 978-1-62708-196-2
... or mechanistic description. As a rule of thumb, elongation in excess of 200% is termed as superplasticity. Over the years, a number of superplasticity models have been proposed. A majority of experimental evidences suggests that grain-boundary sliding (GBS) is the dominant deformation mechanism. Generally...
Abstract
This article presents a mechanical description of superplasticity and discusses constitutive equations that are essential for simulating superplastic forming processes, applicable to structural superplasticity. It presents the phenomenological constitutive equations of superplasticity and classical physical constitutive equations. The article also reviews the accommodation mechanisms that are divided into two major groups, namely, diffusional accommodation and accommodation by dislocations.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0009003
EISBN: 978-1-62708-185-6
... equations. Such expressions are necessary for the computer modeling of deformation of materials, but it must be noted that no universally accepted equations have been developed. One of the oldest and most useful equations of this type is: (Eq 34) Z = A [ sinh ( α σ ) ] 1 / m...
Abstract
This article provides the definitions of stress and strain, and describes the relationship between stress and strain by stress-strain curves and true-stress/true-strain curves. The emphasis is on understanding the factors that determine the extent of deformation a metal can withstand before cracking or fracture occurs. The article reviews the process variables that influence the degree of workability and summarizes the mathematical relationships that describe the occurrence of room-temperature ductile fracture under workability conditions. It discusses the most common situations encountered in multiaxial stress states. The construction of a processing map based on deformation mechanisms is also discussed.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003546
EISBN: 978-1-62708-180-1
... with increasingly sophisticated finite-element thermal stress analysis. Development of more refined engineering-based models should result in less reliance on component simulation, which is subject to some uncertainty. It has been customary to characterize materials in terms of their fatigue and creep...
Abstract
Thermomechanical fatigue (TMF) refers to the process of fatigue damage under simultaneous changes in temperature and mechanical strain. This article reviews the process of TMF with a practical example of life assessment. It describes TMF damages caused due to two possible types of loading: in-phase and out-of-phase cycling. The article illustrates the ways in which damage can interact at high and low temperatures and the development of microstructurally based models in parametric form. It presents a case study of the prediction of residual life in a turbine casing of a ship through stress analysis and fracture mechanics analyses of the casing.
1