Skip Nav Destination
Close Modal
Search Results for
mechanical treatments
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 2256 Search Results for
mechanical treatments
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006270
EISBN: 978-1-62708-169-6
... a detailed discussion on the effects of heat treatment on the mechanical properties for three general classes of titanium alloys, namely, alpha and near-alpha titanium alloys, alpha-beta alloys, and beta alloys. alpha and near-alpha titanium alloys alpha-beta alloys fatigue crack propagation fatigue...
Abstract
The response of titanium and titanium alloys to heat treatment depends on the composition of the metal, the effects of the alloying elements on the alpha-beta crystal transformation, and the thermomechanical processing utilized during processing of the alloy. This article provides a detailed discussion on the effects of heat treatment on the mechanical properties for three general classes of titanium alloys, namely, alpha and near-alpha titanium alloys, alpha-beta alloys, and beta alloys.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003673
EISBN: 978-1-62708-182-5
... Abstract This article discusses factors that influence the effect of alloying, metallurgical treatments, and mechanical treatments on the corrosion resistance of metallic materials, with schematic illustrations. corrosion resistance alloying metallurgical treatments mechanical...
Image
Published: 01 December 2008
Fig. 26 Influence of quench and temper heat treatment on mechanical properties of an unalloyed, high-strength gray iron. Impact tests were unnotched. Source: Ref 63
More
Image
Published: 01 January 1994
Image
Published: 01 December 1998
Fig. 2 Effect of alloy, heat treatment, and specimen location on mechanical properties of forged magnesium aircraft wheels
More
Image
in Selection and Application of Magnesium and Magnesium Alloys
> Properties and Selection: Nonferrous Alloys and Special-Purpose Materials
Published: 01 January 1990
Fig. 10 Effect of alloy, heat treatment, and specimen location on mechanical properties of forged magnesium aircraft wheels
More
Image
Published: 01 June 2016
Fig. 24 Effect of 3 h heat treatment at temperature on room-temperature mechanical properties of cold-worked Monel 400. Source: Ref 27
More
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003674
EISBN: 978-1-62708-182-5
... Abstract This article addresses the general effects of the composition, mechanical treatment, surface treatment, and processing on the corrosion resistance of aluminum and aluminum alloys. There are five major alloying elements: copper, manganese, silicon, magnesium, and zinc, which...
Abstract
This article addresses the general effects of the composition, mechanical treatment, surface treatment, and processing on the corrosion resistance of aluminum and aluminum alloys. There are five major alloying elements: copper, manganese, silicon, magnesium, and zinc, which significantly influence the properties of aluminum alloys. There are organic coatings or paints that provide a barrier between a corrosive environment and aluminum surface. Inorganic coatings, including claddings, and enhanced oxides, such as anodized films, Boehmite films, and conversion coatings also help in corrosion prevention. The article assists in the information on selection of fabrication operations, as they play an important role in corrosion resistance.
Image
Published: 01 December 1998
Fig. 22 Plane-strain compression. (a) Plane-strain compression of a block in a die. (b) Indenting dies for plane-strain compression testing. Source: R.N. Parkins, Mechanical Treatment of Metals, Elsevier, 1968, p 22
More
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003672
EISBN: 978-1-62708-182-5
..., there are metallurgical factors, often referred to as microstructure, such as crystal form, grain size and shape, grain heterogeneity, second phases, impurity inclusions, and residual stress that can influence corrosion. In addition, mechanical treatments can have effects on the corrosion properties, both positive...
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002358
EISBN: 978-1-62708-193-1
... be entirely inappropriate in another situation. It is critical, therefore, to understand the different types of small cracks before selecting suitable analytical treatments. This article considers three types of small cracks: microstructurally small, mechanically small, and chemically small. One note...
Abstract
This article defines different types of small cracks and identifies the different factors that influence small-crack behavior. Appropriate analysis techniques, including both rigorous scientific and practical engineering treatments, are briefly described. Important material data issues are addressed, including increased scatter in small-crack data and recommended small-crack test methods. The article highlights the applications where small cracks may be particularly important.
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005994
EISBN: 978-1-62708-168-9
... Abstract This article provides general information on the definition, purposes, and quench equipment for direct-forge quenching (DFQ) and direct heat treatment (DHT) processes that are widely used in automotive and various other mechanical industries. It discusses the technological advances...
Abstract
This article provides general information on the definition, purposes, and quench equipment for direct-forge quenching (DFQ) and direct heat treatment (DHT) processes that are widely used in automotive and various other mechanical industries. It discusses the technological advances in these processes and their ability to produce high-quality components at low production cost from microalloyed steels. Further, the article describes the influence of carbon contents on toughness of microalloyed direct heat treated steels. It focuses on the DFQ and DHT steel technologies applied in continuous rolling mills to produce various DHT steels for machining and cold forming applications.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001268
EISBN: 978-1-62708-170-2
... treatments, and waste treatment of mechanical plating. copper alloys ferrous metals galvanic properties glass beads hydrogen embrittlement lead mechanical plating mechanical plating equipment mechanical properties metallic dust metallic powder process capability stainless steel tumbling...
Abstract
Mechanical plating is a method for coating ferrous metals, copper alloys, lead, stainless steel, and certain types of castings by tumbling the parts in a mixture of glass beads, metallic dust or powder, promoter or accelerator chemicals, and water. It offers a straightforward alternative method for achieving desired mechanical and galvanic properties with an extremely low risk of hydrogen embrittlement. This article provides a detailed description of the equipment, process steps, process capabilities, applicable parts, specific characteristics, advantages, limitations, post treatments, and waste treatment of mechanical plating.
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006985
EISBN: 978-1-62708-439-0
... Alloy , Int. J. Fatigue , Vol 77 , Aug 2015 , p 154 – 159 , 10.1016/j.ijfatigue.2015.03.004 36. Baek M.S. , Kreethi R. , Park T.H. , Sohn Y. , and Lee K.A. , Influence of Heat Treatment on the High-Cycle Fatigue Properties and Fatigue Damage Mechanism of Selective...
Abstract
Fatigue failure is a critical performance metric for additively manufactured (AM) metal parts, especially those intended for safety-critical structural applications (i.e., applications where part failure causes system failure and injury to users). This article discusses some of the common defects that occur in laser powder bed fusion (L-PBF) components, mitigation strategies, and their impact on fatigue failure. It summarizes the fatigue properties of three commonly studied structural alloys, namely aluminum alloy, titanium alloy, and nickel-base superalloy.
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006589
EISBN: 978-1-62708-210-5
... 0.15 max Cu 0.10 max 0.10 max Mn 0.10 max 0.10 max Mg 0.8–1.0 0.6–0.8 Cr 0.06–0.20 0.06–0.20 Ti 0.10–0.20 0.10–0.20 Zn 6.5–7.5 6.0–7.0 Other (each), max 0.05 0.05 Other (total), max 0.15 0.15 Al bal bal Without heat treatment, mechanical properties...
Abstract
Alloys 771.0 and 772.0 are high-strength, shock-resistant, aluminum sand-casting alloys that develop a high combination of physical and mechanical properties in the as-cast and room-temperature-aged conditions. This datasheet provides information on key alloy metallurgy, processing effects on physical and mechanical properties, and fabrication characteristics of these 7xxx series alloys.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003122
EISBN: 978-1-62708-199-3
... Condition T3 applies to products that are cold worked specifically to improve strength after solution heat treatment and for which mechanical properties have been stabilized by room-temperature aging. It also applies to products in which the effects of cold work, imparted by flattening or straightening...
Abstract
This article describes the systems for designating the aluminum and aluminum alloys that incorporate the product forms (wrought, casting or foundry ingots) and its respective temper for strain-hardened alloys, heat-treatable alloys and annealed alloys. All these systems are covered by American National Standards Institute (ANSI) standard H35.1. Furthermore, the article provides a short note on the designation of unregistered tempers.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006621
EISBN: 978-1-62708-290-7
... Abstract This article focuses on a study that was performed to understand the effects of powder attributes; process parameters; and hot isostatic pressing (HIP) treatment on the densification, mechanical and corrosion properties, and microstructures of 17-4 PH stainless steel gas- and water...
Abstract
This article focuses on a study that was performed to understand the effects of powder attributes; process parameters; and hot isostatic pressing (HIP) treatment on the densification, mechanical and corrosion properties, and microstructures of 17-4 PH stainless steel gas- and water-atomized laser-powder bed fusion (LPBF) parts at various energy densities. The results from the study showed the strong dependence of densification, mechanical properties, and microstructures on temperature, pressure, and time during the HIP cycle. The density, ultimate tensile strength, hardness and yield strength of gas and water-atomized LPBF parts increased due to HIP treatment and were higher than as-printed properties. The results also confirmed superior corrosion performance of the HIP treated LPBF parts.
Book Chapter
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005960
EISBN: 978-1-62708-168-9
... provide a good combination of high strength and toughness that make them attractive for aerospace application. It also presents tables that provide information on the effect of aging temperatures and heat treatment on mechanical properties and impact energy of these steels. annealing hardenability...
Abstract
Hardenable steels with high-alloy content includes a family of nickel-cobalt steels with high strength and high toughness. This article describes various heat treatments, namely, normalizing, annealing, hardening, tempering, stress relieving, overaging, quenching, refrigeration, and straightening treatment, applied to HP9-4-20, HP9-4-25, HP9-4-30, and HP9-4-45 steels. These steels have high fracture toughness when heat treated to very high strength levels. The article also describes heat treatments applied to other alloys such as AF 1410, AerMet 100, AerMet 310, and AerMet 340, which provide a good combination of high strength and toughness that make them attractive for aerospace application. It also presents tables that provide information on the effect of aging temperatures and heat treatment on mechanical properties and impact energy of these steels.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006258
EISBN: 978-1-62708-169-6
..., precipitation strengthening or aging, and annealing, applied to these alloys. Finally, it describes the microstructural aspects and precipitate-matrix relationships of MgMCs as well as the heat treatment methods for MgMCs. heat treatment magnesium alloys magnesium-matrix composites mechanical...
Abstract
Magnesium-matrix composites (MgMCs) are very promising as structural materials because of their low density, high specific strength, and excellent castability. This article provides information on the characteristics, mechanical properties, and applications of magnesium alloys and composites. It discusses the microstructures used for the most common magnesium alloys used in metal-matrix composites, namely, magnesium-aluminum, magnesium-rare earth and magnesium-lithium alloys. The article focuses on the most common methods of heat treatment, including solution heat treatment, precipitation strengthening or aging, and annealing, applied to these alloys. Finally, it describes the microstructural aspects and precipitate-matrix relationships of MgMCs as well as the heat treatment methods for MgMCs.
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006578
EISBN: 978-1-62708-210-5
... provides information on key alloy metallurgy and processing effects on mechanical properties of separately cast test bars of these alloys. aluminum alloy 391.0 aluminum alloy A391.0 aluminum alloy B391.0 cast test bars castability corrosion resistance hypereutectic aluminum-silicon alloys...
Abstract
The 391-type hypereutectic aluminum-silicon alloys are hypereutectic alloys designed for applications where excellent wear resistance is needed. They are similar to the 390 family of alloys, except for a low copper content to improve castability and corrosion resistance. This datasheet provides information on key alloy metallurgy and processing effects on mechanical properties of separately cast test bars of these alloys.
1