Skip Nav Destination
Close Modal
Search Results for
mechanical components
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 2691
Search Results for mechanical components
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003321
EISBN: 978-1-62708-176-4
... Abstract This article describes the tests for the common types of fabricated components and modeling of metal deformation. It provides an overview of component testing and briefly reviews the relationship of mechanical properties in the process of mechanical design for static loads, cyclic...
Abstract
This article describes the tests for the common types of fabricated components and modeling of metal deformation. It provides an overview of component testing and briefly reviews the relationship of mechanical properties in the process of mechanical design for static loads, cyclic loads, dynamic loads, and high-temperature materials. The article describes the general properties related to monotonic stress-strain behavior of steels. It also discusses materials properties and operating stresses as well as other factors, such as part shape and environmental effects, which play significant roles in the design process of components.
Image
Published: 01 January 2006
Fig. 5 Principal components of a single-action straight-side mechanical press. The press shown has a large bed, four-point suspension, and an eccentric drive with counterbalance cylinders. Slide adjustment is motorized.
More
Image
Published: 01 January 2006
Image
Published: 01 December 1998
Image
Published: 01 December 1998
Fig. 9 Vickers hardness testers. (a) Principal components of a mechanical type. (b) Modern Vickers tester with digital readout of diagonal measurements and hardness values
More
Image
Published: 15 December 2019
Fig. 3 Components of an atomic force microscope (AFM) stage. A mechanical structure supports both the force sensor and the xyz piezoelectric scanner. The vertical resolution of an AFM is primarily established by the rigidity of the mechanical structure.
More
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005966
EISBN: 978-1-62708-166-5
... Abstract This article focuses on the mechanisms, models, prevention, correction, and effects associated with decarburization inherited from semi-finished product processing prior to induction heating. It discusses the diffusion of carbon in austenitic iron, which has a face-centered cubic...
Abstract
This article focuses on the mechanisms, models, prevention, correction, and effects associated with decarburization inherited from semi-finished product processing prior to induction heating. It discusses the diffusion of carbon in austenitic iron, which has a face-centered cubic crystal structure that provides an interstitial path for the migration of the relatively small carbon atoms. The article describes the evolution of steel microstructure with progressive decarburization (in air) to a steady-state carbon gradient using an iron-iron carbide phase diagram. It provides useful information on the impact of alloying on vulnerability to decarburization, and the impact of decarburization on the mechanical properties of steels and cast irons. The article also describes the technological operations that potentially cause decarburization and the practical implications for induction hardening.
Image
Published: 01 January 2006
Fig. 1 Essential components and mechanics of (a) draw bending and (b) compression bending of bars and bar sections
More
Image
Published: 01 January 2006
Image
Published: 01 January 2005
Image
Published: 01 January 2005
Image
Published: 01 December 1998
Fig. 7 Essential components and mechanics of draw bending and compression bending of bars and bar sections
More
Image
Published: 01 December 1998
Image
in Procedure Development and Practice Considerations for Explosion Welding[1]
> Welding, Brazing, and Soldering
Published: 01 January 1993
Fig. 1 Schematic showing mechanics of EXW. (a) Alignment of components to be joined before detonation. (b) Motion of components at detonation to form weld plus vector diagram of velocity components. (c) Close-up view of wavelike weld interface characteristic of EXW process
More
Image
Published: 15 May 2022
Image
Published: 01 February 2024
Fig. 9 Schematic illustration of the mechanism of oxidation of a fatty acid component of a vegetable oil and generation of oxidation by-products. Note: 1 O 2 and ROX are singlet oxygen and lipoxygenase, respectively.
More
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002470
EISBN: 978-1-62708-194-8
... as they relate to fracture toughness and design process. The article explores the use of plane strain fracture toughness, crack-tip opening displacement, and the J-integral as the criteria for the design and safe operation of structures and mechanical components. It discusses the variables affecting fracture...
Abstract
Fracture toughness is the ability of a material to withstand fracture in the presence of cracks. This article focuses on the use of fracture toughness as a parameter for engineering and design purposes. Both linear elastic and elastic-plastic fracture mechanics concepts are reviewed as they relate to fracture toughness and design process. The article explores the use of plane strain fracture toughness, crack-tip opening displacement, and the J-integral as the criteria for the design and safe operation of structures and mechanical components. It discusses the variables affecting fracture toughness, including yield strength, loading rate, temperature, and material thickness. A summary of different fatigue and fracture mechanics design philosophies and their relationship with fracture toughness is provided. The article concludes with information on the examples of fracture toughness in design.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006836
EISBN: 978-1-62708-329-4
... Abstract Mechanical springs are used in mechanical components to exert force, provide flexibility, and absorb or store energy. This article provides an overview of the operating conditions of mechanical springs. Common failure mechanisms and processes involved in the examination of spring...
Abstract
Mechanical springs are used in mechanical components to exert force, provide flexibility, and absorb or store energy. This article provides an overview of the operating conditions of mechanical springs. Common failure mechanisms and processes involved in the examination of spring failures are also discussed. In addition, the article discusses common causes of failures and presents examples of specific spring failures, describes fatigue failures that resulted from these types of material defects, and demonstrates how improper fabrication can result in premature fatigue failure. It also covers failures of shape memory alloy springs and failures caused by corrosion and operating conditions.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006414
EISBN: 978-1-62708-192-4
... Abstract Fretting is the small-amplitude oscillatory movement that can occur between contacting surfaces, which are nominally at rest. This article discusses fretting wear in mechanical components and the mechanisms of fretting wear. It describes the role of fretting conditions...
Abstract
Fretting is the small-amplitude oscillatory movement that can occur between contacting surfaces, which are nominally at rest. This article discusses fretting wear in mechanical components and the mechanisms of fretting wear. It describes the role of fretting conditions, such as fretting duration, slip amplitude, normal load, fretting frequency, contact geometry, type of vibration, and surface finish, as well as the role of environmental conditions. The article reviews the influence of an aqueous environment on the mechanism of fretting. The steps that can be taken to reduce or eliminate damage due to fretting are extremely diverse. The article presents some general indications of how to address the fretting wear problem.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003754
EISBN: 978-1-62708-177-1
... Abstract This article provides information on the basic components of a light microscope, including the illumination system, collector lens, and optical and mechanical components. It describes optical performance in terms of image aberrations, resolution, and depth of field. The article...
Abstract
This article provides information on the basic components of a light microscope, including the illumination system, collector lens, and optical and mechanical components. It describes optical performance in terms of image aberrations, resolution, and depth of field. The article discusses the examination of specimen surfaces using polarized light, phase contrast, oblique illumination, dark-field illumination, bright-field illumination, interference-contrast illumination, and phase contrast illumination. Special techniques and devices that may be used with the optical microscope, to obtain additional information, are also described. The article concludes with information on photomicroscopy and macrophotography.
1