Skip Nav Destination
Close Modal
Search Results for
mass transfer
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1055
Search Results for mass transfer
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005636
EISBN: 978-1-62708-174-0
... Abstract This article provides a comprehensive review and critical assessment of numerical modeling of heat and mass transfer in fusion welding. The different fusion welding processes are gas tungsten arc welding, gas metal arc welding, laser welding, electron beam welding, and laser-arc hybrid...
Abstract
This article provides a comprehensive review and critical assessment of numerical modeling of heat and mass transfer in fusion welding. The different fusion welding processes are gas tungsten arc welding, gas metal arc welding, laser welding, electron beam welding, and laser-arc hybrid welding. The article presents the mathematical equations of mass, momentum, energy, and species conservation. It reviews the applications of heat transfer and fluid flow models for different welding processes. Finally, the article discusses the approaches to improve reliability of, and reduce uncertainty in, numerical models.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005621
EISBN: 978-1-62708-174-0
... Abstract Heat and mass transfer in arc welding is normally studied from the standpoint of the weld pool and heat-affected zone. This article examines the heat and mass transfer from the arc to the base metal during the gas metal arc welding process. It also provides information on the selecting...
Abstract
Heat and mass transfer in arc welding is normally studied from the standpoint of the weld pool and heat-affected zone. This article examines the heat and mass transfer from the arc to the base metal during the gas metal arc welding process. It also provides information on the selecting parameters for the development of welding procedures.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001335
EISBN: 978-1-62708-173-3
... Abstract This article provides information on heat and mass transfer from the arc to the base metal in the gas-metal arc welding (GMAW) process. It discusses the development of welding procedures and the general operation of the process. The issues described in this article include the: total...
Abstract
This article provides information on heat and mass transfer from the arc to the base metal in the gas-metal arc welding (GMAW) process. It discusses the development of welding procedures and the general operation of the process. The issues described in this article include the: total heat transferred to the base metal; partitioning of heat transfer between the arc and the molten electrode droplets; transfer modes of the droplets; role of the arc in droplet transfer; and simple model for welding procedure development based on an understanding of heat and mass transfer to the base metal.
Image
Published: 31 October 2011
Fig. 6 (a) Technique to perform computational heat- and mass-transfer calculations for fillet welds using the coordinate transformation algorithm. (b) Typical result of such simulation shows the weld pool curvature as well as transients of temperature distributions. (c) Comparisons
More
Image
Published: 01 December 2008
Image
Published: 01 December 2008
Fig. 11 Experimental mass transfer coefficient versus peripheral velocity for the dissolution of a rotating carbon rod in an iron-carbon melt. Source: Ref 22
More
Image
Published: 01 August 2013
Fig. 9 Total carbon flux (triangular marks) and mass transfer coefficient (circle marks) as a function of the relative area at 2 μm 2 scale and peak-to-valley surface roughness. Source: Ref 42
More
Image
in Plasma (Ion) Nitriding and Nitrocarburizing of Steels
> Steel Heat Treating Fundamentals and Processes
Published: 01 August 2013
Image
in Plasma (Ion) Nitriding and Nitrocarburizing of Steels
> Steel Heat Treating Fundamentals and Processes
Published: 01 August 2013
Image
in Corrosion by Molten Nitrates, Nitrites, and Fluorides
> Corrosion: Fundamentals, Testing, and Protection
Published: 01 January 2003
Image
Published: 01 January 2003
Image
Published: 01 January 2003
Fig. 3 Mass transfer as characterized by the weight changes of type 316 stainless steel coupons exposed around a nonisothermal liquid lithium type 316 stainless steel circuit for 9000 h. Source: Ref 2
More
Image
Published: 01 January 2003
Fig. 8 SEM micrographs of chromium mass-transfer deposits found at the 460 °C (860 °F) position in the cold leg of a lithium/type 316 stainless steel thermal convection loop after 1700 h. Mass-transfer deposits are often a more serious result of corrosion than wall thinning. (a) Cross section
More
Image
Published: 01 January 2003
Fig. 10 Mass-transfer deposits on X10CrNiMoTi 15 15 stainless steel after 1000 h exposure in static liquid lithium at 700 °C (1290 °F). Deposits are of the composition of the capsule steel (18Cr-8Ni). Courtesy of H.U. Borgstedt, Karlsruhe Nuclear Center
More
Image
Published: 01 November 2010
Fig. 6 (a) Technique to perform computational heat- and mass-transfer calculations for fillet welds using the coordinate transformation algorithm. (b) Typical result of such simulation shows the weld pool curvature as well as transients of temperature distributions. (c) Comparisons
More
Image
Published: 01 August 2013
Image
Published: 01 February 2024
Fig. 79 Heat-transfer data variation with water mass flux for the plane surfaces of the test piece used, as shown in Fig. 77 . Source: Ref 224
More
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005799
EISBN: 978-1-62708-165-8
... Abstract This article describes the thermodynamics and kinetics of gas carburizing reactions, and details the mass transfer mechanism during gas carburizing. It discusses the various considerations involved in carburizing process planning, and reviews successful operation of the gas carburizing...
Abstract
This article describes the thermodynamics and kinetics of gas carburizing reactions, and details the mass transfer mechanism during gas carburizing. It discusses the various considerations involved in carburizing process planning, and reviews successful operation of the gas carburizing process based on the control of three principal variables: temperature, atmosphere composition or carbon potential, and time. The article also describes the selection criteria for alloy, carbon sources, atmosphere types, and carbon monoxide level for endothermic carburizing atmospheres. It provides information on carburizing modeling, case depth prediction, case depth measurement, and case depth evaluation as well as on carburizing equipment, and also covers the factors affecting distortion after carburizing.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005898
EISBN: 978-1-62708-167-2
... Abstract This article focuses on the basic turbulent flow, and the thermal, mass-transfer, and hydrodynamic phenomena for use in modeling physical processes during induction melting. It provides a discussion on transport phenomena equations that includes the approximation of convective terms...
Abstract
This article focuses on the basic turbulent flow, and the thermal, mass-transfer, and hydrodynamic phenomena for use in modeling physical processes during induction melting. It provides a discussion on transport phenomena equations that includes the approximation of convective terms in the transport equation and computational schemes for the fluid dynamics equation. The aspects of computational algorithms for specific magnetohydrodynamic problems with mutual influence of the magnetic field and melt flow due to the changing shape of the free surface are also considered. The article illustrates the application of the basic equations and approaches formulated for electromagnetic field and melt turbulent flow for the numerical study of an induction crucible furnace.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006415
EISBN: 978-1-62708-192-4
...; corrosion products and the mass transfer of oxygen. The article describes slurry particle impingement tests and grinding tribocorrosion tests, as well as the factors to be considered for mitigating corrosive wear, such as materials selection, surface treatments, and environment modifications...
Abstract
Tribocorrosion is the subject dealing with complex, synergistic effects of chemical and mechanical conditions that cause wear. This article begins with a discussion on oxidative wear and corrosive wear, as well as quantitative measurements of corrosion, mechanical wear, and wear-corrosion effects. It illustrates the mechanism of corrosive-abrasive wear and discusses the factors affecting two-body wear. These factors include particle shape, size, density, and hardness; slurry velocity; slurry particle angle of attack; solids concentration in the slurry; hydrodynamic factors; corrosion products and the mass transfer of oxygen. The article describes slurry particle impingement tests and grinding tribocorrosion tests, as well as the factors to be considered for mitigating corrosive wear, such as materials selection, surface treatments, and environment modifications.
1