Skip Nav Destination
Close Modal
By
Curtis D. Mowry, Russell L. Jarek, Jessica Román-Kustas, Amber C. Telles, Adam S. Pimentel
Search Results for
mass spectrometry
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 186 Search Results for
mass spectrometry
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001776
EISBN: 978-1-62708-178-8
... Abstract Gas chromatography/mass spectrometry (GC/MS) is useful in analyzing mixtures of organic compounds. This article commences with a description of the principles of mass spectrometry and gas chromatography. It provides information on the procedures of mass spectrum interpretation...
Abstract
Gas chromatography/mass spectrometry (GC/MS) is useful in analyzing mixtures of organic compounds. This article commences with a description of the principles of mass spectrometry and gas chromatography. It provides information on the procedures of mass spectrum interpretation, and describes the experimental procedure of and sample preparation for GC/MS. The article also discusses complementary techniques, such as high-performance liquid chromatography/mass spectrometry and mass spectrometry/mass spectrometry, and concludes with the applications of GC/MS.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001737
EISBN: 978-1-62708-178-8
... Abstract Spark source mass spectrometry (SSMS) is an analytical technique used for determining the concentration of elements in a wide range of solid samples, including metals, semiconductors, ceramics, geological and biological materials, and air and water pollution samples. This article...
Abstract
Spark source mass spectrometry (SSMS) is an analytical technique used for determining the concentration of elements in a wide range of solid samples, including metals, semiconductors, ceramics, geological and biological materials, and air and water pollution samples. This article discusses the basic principles of spark source technique; SSMS instrumentation such as ion source, electric sector, and magnetic sector; sample preparation; and test procedures of SSMS. Some of the related techniques to SSMS are laser ionization mass spectrometry and laser-induced resonance ionization mass spectrometry. The ions produced in SSMS are detected by either the photometric method or electrical detection method and quantitatively measured by techniques such as internal standardization techniques, isotope dilution, multi element isotope dilution, and dry spike isotope dilution. The detected spark source spectrum contains all the elemental data of the tested sample. Finally, the article exemplifies the applications of SSMS.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001738
EISBN: 978-1-62708-178-8
... Abstract Gas analysis by mass spectrometry, or gas mass spectrometry, is a useful analytical tool for investigations performed in controlled atmospheres or in vacuum. This article provides sufficient information to determine if gas mass spectrometry can produce the data required...
Abstract
Gas analysis by mass spectrometry, or gas mass spectrometry, is a useful analytical tool for investigations performed in controlled atmospheres or in vacuum. This article provides sufficient information to determine if gas mass spectrometry can produce the data required and to determine the type of instrument necessary for a particular application. It discusses the working operations of gas mass spectrometer components, namely, the introduction system, ion sources, mass analyzers, and the ion detector. The article also provides information on resolution of a gas mass spectrometer determined by the width of the source slit and the collector slit. Finally, it describes the instrument set-up for gas mass spectrometry, and shows how to analyze the test results of gas mass spectrometry.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006651
EISBN: 978-1-62708-213-6
... Abstract This article endeavors to familiarize the reader with a selection of different ionization designs and instrument components to provide knowledge for sorting the various analytical strategies in the field of solid analysis by mass spectrometry (MS). It begins with a description...
Abstract
This article endeavors to familiarize the reader with a selection of different ionization designs and instrument components to provide knowledge for sorting the various analytical strategies in the field of solid analysis by mass spectrometry (MS). It begins with a description of the general principles of MS. This is followed by sections providing a basic understanding of instrumentation and discussing the operating requirements as well as practical considerations related to solid sample analysis by MS. Instrumentation discussed include the triple quadrupole mass spectrometer and the time-of-flight mass spectrometer. Inductively coupled plasma and thermal ionization MS provide atomic information, and direct analysis in real-time and matrix-assisted laser-desorption ionization MS are used to analyze molecular compositions. The article describes various factors pertinent to ionization methods, namely glow discharge mass spectrometry and secondary ion mass spectrometry. It concludes with a section on various examples of applications and interpretation of MS for various materials.
Book Chapter
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006663
EISBN: 978-1-62708-213-6
... Abstract Gas analysis by mass spectrometry, or gas mass spectrometry, is a general technique using a family of instrumentation that creates a charged ion from a gas phase chemical species and measures the mass-to-charge ratio. This article covers gas analysis applications that do not use...
Abstract
Gas analysis by mass spectrometry, or gas mass spectrometry, is a general technique using a family of instrumentation that creates a charged ion from a gas phase chemical species and measures the mass-to-charge ratio. This article covers gas analysis applications that do not use chromatographic separation to physically isolate components of the sample prior to analysis. It is intended to provide an understanding of gas analysis instrumentation and terminology that will help make informed decisions in choosing an instrument and methodology appropriate for the data needed. Mass-analyzer technologies for gas mass spectrometry, namely quadrupole mass filters, magnetic sector mass filters, and time-of-flight mass analyzers are covered. Common factors to consider in choosing an analyzer for static or continuous gas measurement are also described. In addition, the article presents some examples of applications of gas mass spectrometry.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006648
EISBN: 978-1-62708-213-6
... Abstract This article provides a brief account of glow discharge mass spectrometry (GDMS) for direct determination of trace elements in solid samples and for fast depth profiling in a great variety of innovative materials. It begins by describing the general principles of GDMS. This is followed...
Abstract
This article provides a brief account of glow discharge mass spectrometry (GDMS) for direct determination of trace elements in solid samples and for fast depth profiling in a great variety of innovative materials. It begins by describing the general principles of GDMS. This is followed by a discussion on the various components of a GDMS system as well as commercial GDMS instruments. A description of processes involved in specimen preparation and cleaning in GDMS is then presented. Various problems pertinent to multielemental calibrations in GDMS are discussed along with measures to overcome them. The article further provides information on the processes involved in the analytical setup of parameters in GDMS, covering the steps involved in the analysis of GDMS data. It ends with a section on the application and interpretation of GDMS in the metals industry.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006641
EISBN: 978-1-62708-213-6
... Abstract This article discusses the basic principles of inductively coupled plasma mass spectrometry (ICP-MS), covering different instruments used for performing ICP-MS analysis. The instruments covered include the sample-introduction system, ICP ion source, mass analyzer, and ion detector...
Abstract
This article discusses the basic principles of inductively coupled plasma mass spectrometry (ICP-MS), covering different instruments used for performing ICP-MS analysis. The instruments covered include the sample-introduction system, ICP ion source, mass analyzer, and ion detector. Emphasis is placed on ICP-MS applications in the semiconductor, photovoltaic, materials science, and other electronics and high-technology areas.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006664
EISBN: 978-1-62708-213-6
... Abstract This article briefly describes the capabilities of gas chromatography/mass spectrometry, which is used to qualitatively and quantitatively determine organic (and some inorganic) compound purity and stability and to identify components in a mixture. The discussion covers in more detail...
Abstract
This article briefly describes the capabilities of gas chromatography/mass spectrometry, which is used to qualitatively and quantitatively determine organic (and some inorganic) compound purity and stability and to identify components in a mixture. The discussion covers in more detail gas chromatography/mass spectrometry (GC/MS) instrumentation, interpreting mass spectra, GC/MS methodology, and GC/MS advances. Sample preparation, which is very important in GC/MS to avoid erroneous data and to minimize maintenance and troubleshooting of the instrument, is also discussed. Further, the article highlights the state of the art in the MS detector technology.
Image
Published: 01 January 2002
Fig. 16 Time-of-flight secondary ion mass spectrometry spectrum showing mass separation of Cu and C 5 H 3 peaks, both at a nominal mass of 63
More
Image
Published: 15 January 2021
Fig. 8 Time-of-flight secondary ion mass spectrometry total positive ion mass spectrum of polyethylene terephthalate
More
Image
Published: 15 December 2019
Fig. 1 Electron ionization mass spectrometry spectrum for ethanol. The ions (mass-to-charge ratio, m / z ) are presented as a function of relative intensity normalized to the most abundant at m / z = 31. The molecular ion at m / z = 46 is also observed. Source: Ref 9
More
Image
Published: 01 January 1986
Image
Published: 01 January 2002
Fig. 8 Time-of-flight secondary ion mass spectrometry positive ion spectrum of stainless steel surface
More
Image
Published: 01 January 2002
Fig. 15 Time-of-flight secondary ion mass spectrometry negative ion spectrum of stainless steel surface. Postive ion spectrum is in Fig. 8 .
More
Image
Published: 01 January 2002
Fig. 17 Time-of-flight secondary ion mass spectrometry images of 50 by 50 μm stainless steel surface area. (a) Map of Cr (b) Map of Fe, (c) Map of Na
More
Image
Published: 15 January 2021
Fig. 9 Time-of-flight secondary ion mass spectrometry total positive ion spectrum of polypropylene surface showing unexpected peaks at 304 and 481 Daltons
More
Image
Published: 15 January 2021
Fig. 10 Time-of-flight secondary ion mass spectrometry total ion image of polypropylene surface with suspected contamination present
More
Image
Published: 15 January 2021
Fig. 15 Time-of-flight secondary ion mass spectrometry spectra showing MS 2 spectra for mass-to-charge ( m / z ) ratios of 304 and 481 precursor ions
More
Image
Published: 15 January 2021
Fig. 16 Time-of-flight secondary ion mass spectrometry (TOF-SIMS) MS 2 spectrum at 304 compared to National Institute of Standards and Technology (NIST) database spectrum for benzalkonium, a polymer additive
More
Image
Published: 15 January 2021
Fig. 17 Time-of-flight secondary ion mass spectrometry (TOF-SIMS) MS 2 spectrum at 481 compared to National Institute of Standards and Technology (NIST) database spectrum for Tinuvin 770, a polymer additive
More
1