Skip Nav Destination
Close Modal
By
Curtis D. Mowry, Russell L. Jarek, Jessica Román-Kustas, Amber C. Telles, Adam S. Pimentel
Search Results for
mass spectrometers
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 152 Search Results for
mass spectrometers
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 1986
Image
Published: 15 May 2022
Fig. 65 Time-of-flight secondary ion mass spectrometer/mass spectrometer spectrum of polyethylene terephthalate sample. Courtesy of Physical Electronics Inc., Chanhassen, MN
More
Image
Published: 15 May 2022
Fig. 64 Schematic diagram of time-of-flight secondary ion mass spectrometer/mass spectrometer (MS/MS). ESA, electrostatic analyzer; CID, collision-induced dissociation; SED, secondary electron detector; GCIB, gas cluster ion beam; FIB, focused ion beam; LMIG, liquid metal ion gun. Courtesy
More
Image
Published: 01 January 1986
Image
Published: 01 January 1986
Fig. 3 Schematic of a gas mass spectrometer. Ion source components: A, trap; B, repeller; C, ionization chamber; D, filament; E, extractor; F, Y lens; G, earth plate; H, Z lens; I, source slit; J, Einzel lens; K, magnet
More
Image
Published: 15 December 2019
Image
Published: 15 December 2019
Fig. 2 Schematics of time-of-flight mass spectrometer with (a) linear flight path and (b) reflected flight path, also called a reflectron
More
Image
Published: 15 December 2019
Image
Published: 15 December 2019
Image
Published: 15 December 2019
Image
Published: 15 December 2019
Fig. 5 Positive ion measurements from a quadrupole mass spectrometer illustrate the variety of transported species in ambient air. m/z , mass-to-charge ratio. Source: Ref 4
More
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006651
EISBN: 978-1-62708-213-6
... of the general principles of MS. This is followed by sections providing a basic understanding of instrumentation and discussing the operating requirements as well as practical considerations related to solid sample analysis by MS. Instrumentation discussed include the triple quadrupole mass spectrometer...
Abstract
This article endeavors to familiarize the reader with a selection of different ionization designs and instrument components to provide knowledge for sorting the various analytical strategies in the field of solid analysis by mass spectrometry (MS). It begins with a description of the general principles of MS. This is followed by sections providing a basic understanding of instrumentation and discussing the operating requirements as well as practical considerations related to solid sample analysis by MS. Instrumentation discussed include the triple quadrupole mass spectrometer and the time-of-flight mass spectrometer. Inductively coupled plasma and thermal ionization MS provide atomic information, and direct analysis in real-time and matrix-assisted laser-desorption ionization MS are used to analyze molecular compositions. The article describes various factors pertinent to ionization methods, namely glow discharge mass spectrometry and secondary ion mass spectrometry. It concludes with a section on various examples of applications and interpretation of MS for various materials.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001738
EISBN: 978-1-62708-178-8
... and to determine the type of instrument necessary for a particular application. It discusses the working operations of gas mass spectrometer components, namely, the introduction system, ion sources, mass analyzers, and the ion detector. The article also provides information on resolution of a gas mass spectrometer...
Abstract
Gas analysis by mass spectrometry, or gas mass spectrometry, is a useful analytical tool for investigations performed in controlled atmospheres or in vacuum. This article provides sufficient information to determine if gas mass spectrometry can produce the data required and to determine the type of instrument necessary for a particular application. It discusses the working operations of gas mass spectrometer components, namely, the introduction system, ion sources, mass analyzers, and the ion detector. The article also provides information on resolution of a gas mass spectrometer determined by the width of the source slit and the collector slit. Finally, it describes the instrument set-up for gas mass spectrometry, and shows how to analyze the test results of gas mass spectrometry.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001772
EISBN: 978-1-62708-178-8
... be analyzed chemically by coupling to the microscope a time-of-flight mass spectrometer of single-particle sensitivity, known as the atom probe (AP). This article describes the principles, sample preparation, and quantitative analysis of FIM. It also provides information on the principles, instrument design...
Abstract
Field ion microscopy (FIM) can be used to study the three-dimensional structure of materials, such as metals and semiconductors, because successive atom layers can be ionized and removed from the surface by field evaporation. The ions removed from the surface by field evaporation can be analyzed chemically by coupling to the microscope a time-of-flight mass spectrometer of single-particle sensitivity, known as the atom probe (AP). This article describes the principles, sample preparation, and quantitative analysis of FIM. It also provides information on the principles, instrument design and operation, mass spectra and their interpretation, and applications of AP microanalysis.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003229
EISBN: 978-1-62708-199-3
... through acoustic method and bubble testing. The article gives a short note on types of leak detectors, sulfur hexafluoride detectors and mass-spectrometer. It tabulates the pressure and vacuum system leak-testing methods and discusses the application of gas detectors in leak testing. acoustic method...
Abstract
Leak testing is used to determine the rate at which a liquid or gas penetrates from inside a component or assembly to the outside, or vice versa. This article discusses the type of leaks, namely real leaks, and virtual leaks. It describes the leak testing of fluid systems at pressure through acoustic method and bubble testing. The article gives a short note on types of leak detectors, sulfur hexafluoride detectors and mass-spectrometer. It tabulates the pressure and vacuum system leak-testing methods and discusses the application of gas detectors in leak testing.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001776
EISBN: 978-1-62708-178-8
... chromatography mass spectrometers mass spectrometry polymer pyrolysis Overview Introduction The gas chromatograph/mass spectrometer is the coupling of two analytical instruments, the gas chromatograph and the mass spectrometer; it is particularly useful in analyzing mixtures of organic compounds...
Abstract
Gas chromatography/mass spectrometry (GC/MS) is useful in analyzing mixtures of organic compounds. This article commences with a description of the principles of mass spectrometry and gas chromatography. It provides information on the procedures of mass spectrum interpretation, and describes the experimental procedure of and sample preparation for GC/MS. The article also discusses complementary techniques, such as high-performance liquid chromatography/mass spectrometry and mass spectrometry/mass spectrometry, and concludes with the applications of GC/MS.
Book Chapter
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006663
EISBN: 978-1-62708-213-6
... of gas analysis instrumentation and terminology so informed decisions can be made in choosing an instrument and methodology appropriate for the data needed. General Principles Every gas mass spectrometer requires the same common functions to perform an analysis: sample introduction, ionization...
Abstract
Gas analysis by mass spectrometry, or gas mass spectrometry, is a general technique using a family of instrumentation that creates a charged ion from a gas phase chemical species and measures the mass-to-charge ratio. This article covers gas analysis applications that do not use chromatographic separation to physically isolate components of the sample prior to analysis. It is intended to provide an understanding of gas analysis instrumentation and terminology that will help make informed decisions in choosing an instrument and methodology appropriate for the data needed. Mass-analyzer technologies for gas mass spectrometry, namely quadrupole mass filters, magnetic sector mass filters, and time-of-flight mass analyzers are covered. Common factors to consider in choosing an analyzer for static or continuous gas measurement are also described. In addition, the article presents some examples of applications of gas mass spectrometry.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006664
EISBN: 978-1-62708-213-6
..., “Gas Chromatography,” discusses GC fundamentals as well as common GC detectors: the flame ionization detector, thermal conductivity cell detector, electron capture detector, and sulfur chemiluminescence detector. The mass spectrometer is another common GC detector and requires a detailed article...
Abstract
This article briefly describes the capabilities of gas chromatography/mass spectrometry, which is used to qualitatively and quantitatively determine organic (and some inorganic) compound purity and stability and to identify components in a mixture. The discussion covers in more detail gas chromatography/mass spectrometry (GC/MS) instrumentation, interpreting mass spectra, GC/MS methodology, and GC/MS advances. Sample preparation, which is very important in GC/MS to avoid erroneous data and to minimize maintenance and troubleshooting of the instrument, is also discussed. Further, the article highlights the state of the art in the MS detector technology.
Image
Published: 15 December 2019
Fig. 5 Schematic of a temperature-programmed desorption system consisting of a vacuum chamber and pumping system capable of achieving base pressures of approximately 10 −6 Pa (7.5 × 10 −9 torr). QMS, quadrupole mass spectrometer; AES, Auger electron spectrometer
More
Image
Published: 15 December 2019
Fig. 13 General structure of modern inductively coupled plasma (ICP) mass spectrometry system consisting of (from left to right): a sample-introduction system, an ion source with a radio-frequency (RF) supply, the mass spectrometer equipped with a quadrupole mass filter, and a computer system
More
1