Skip Nav Destination
Close Modal
Search Results for
martensitic malleable iron
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 112 Search Results for
martensitic malleable iron
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001005
EISBN: 978-1-62708-161-0
... iron: blackheart and whiteheart. This article considers only the blackheart type and describes the metallurgical factors of malleable iron. It discusses the mechanical properties of pearlitic and martensitic malleable irons. The article provides additional information on the properties and heat...
Abstract
Malleable iron possesses considerable ductility and toughness because of its combination of nodular graphite and a low-carbon metallic matrix. The desired formation of temper carbon in malleable irons has two basic requirements. First, graphite should not form during the solidification of the white cast iron, and second, graphite must also be readily formed during the annealing heat treatment. These two metallurgical requirements influence the useful compositions of malleable irons and the melting, solidification, and annealing procedures. There are two basic types of malleable iron: blackheart and whiteheart. This article considers only the blackheart type and describes the metallurgical factors of malleable iron. It discusses the mechanical properties of pearlitic and martensitic malleable irons. The article provides additional information on the properties and heat treatment of ferritic, pearlitic, and martensitic malleable irons. The article lists some of the typical applications of malleable iron castings.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003110
EISBN: 978-1-62708-199-3
... the metallurgical control of malleable irons with emphasis on its composition and heat treatment. The article provides information on the specifications and mechanical properties of different types of malleable irons, such as ferritic, pearlitic, and martensitic malleable irons. chemical composition ferritic...
Abstract
Malleable iron is a type of cast iron that has most of its carbon in the form of irregularly shaped graphite nodules. This article tabulates the typical composition of malleable iron and specifications, and applications of malleable iron castings. It discusses the metallurgical control of malleable irons with emphasis on its composition and heat treatment. The article provides information on the specifications and mechanical properties of different types of malleable irons, such as ferritic, pearlitic, and martensitic malleable irons.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005326
EISBN: 978-1-62708-187-0
... practices, heat treatment, microstructure, production technologies, mechanical properties, and applications of ferritic, pearlitic, and martensitic malleable irons. iron carbide ferritic malleable iron cast ferrous metal graphite martensitic malleable iron microstructure pearlitic malleable iron...
Abstract
Malleable iron is a cast ferrous metal that is initially produced as white cast iron and is then heat treated to convert the carbon-containing phase from iron carbide to a nodular form of graphite called temper carbon. This article provides a discussion on the melting practices, heat treatment, microstructure, production technologies, mechanical properties, and applications of ferritic, pearlitic, and martensitic malleable irons.
Book Chapter
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006347
EISBN: 978-1-62708-179-5
... malleable iron and discusses the chemical composition of malleable iron. A summary of mechanical properties and specifications of malleable iron castings is presented in a table. The article also reviews the mechanical properties of ferritic malleable iron and pearlitic and martensitic-pearlitic malleable...
Abstract
Malleable iron, like ductile iron, possesses considerable ductility and toughness because of its combination of nodular graphite and low-carbon metallic matrix. There are two basic types of malleable iron: blackheart and whiteheart. This article focuses on the blackheart malleable iron and discusses the chemical composition of malleable iron. A summary of mechanical properties and specifications of malleable iron castings is presented in a table. The article also reviews the mechanical properties of ferritic malleable iron and pearlitic and martensitic-pearlitic malleable irons.
Book Chapter
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006333
EISBN: 978-1-62708-179-5
.... It schematically illustrates the microstructure of annealed ferritic malleable iron, which is characterized by microstructures consisting of uniformly dispersed fine particles of free carbon in a matrix of ferrite or tempered martensite. The article describes the digital solidification analysis technology...
Abstract
Malleable iron, like ductile iron, possesses considerable ductility and toughness because of its combination of nodular graphite and low-carbon metallic matrix. This article discusses melting practices such as batch cold melting and duplexing, and their control mechanisms. It schematically illustrates the microstructure of annealed ferritic malleable iron, which is characterized by microstructures consisting of uniformly dispersed fine particles of free carbon in a matrix of ferrite or tempered martensite. The article describes the digital solidification analysis technology, simulation technologies, and smart engineering for the production of malleable iron. It provides information on the applications of ferritic and pearlitic malleable irons.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006309
EISBN: 978-1-62708-179-5
... wear resistance (martensitic malleable iron only) Malleabilizing Annealing of White Iron to Produce Malleable Iron The annealing of white iron to produce malleable iron should be done in a furnace with a controlled atmosphere of dry nitrogen, hydrogen (1.5%), and carbon monoxide (1.5...
Abstract
Malleable iron is a type of cast iron that has most of its carbon in the form of irregularly shaped graphite nodules instead of flakes, as in gray iron, or small graphite spherulites, as in ductile iron. This article discusses the production of malleable iron based on the metallurgical criteria: to produce solidified white iron throughout the section thickness; and to produce the desired graphite distribution (nodule count) upon annealing. It describes the induction heating and quenching or flame heating and quenching for surface hardening of fully pearlitic malleable iron. Laser and electron beam techniques also have been used for hardening selected areas on the surface of pearlitic and ferritic malleable iron castings that are free from decarburization.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002399
EISBN: 978-1-62708-193-1
... … … … Pearlitic malleable (60003) 80 197–255 … … … 22–35 Pearlitic malleable (70002) … … … … … 22–35 Martensitic malleable (80002) 100 241–269 … … … 22–35 White and alloy cast irons Unalloyed white 20–50 300–575 … … … 3.5–10.0 High Si (Duriron, Durichlor) 13–18 480–520...
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005969
EISBN: 978-1-62708-168-9
... to 130 °F) and agitated oil, thereby developing a matrix consisting of martensite without bainite and having a hardness of 555 to 627 HB. Figure 7 shows the effects of austenitizing temperature and quenching medium on the hardness of ferritic and pearlitic malleable iron. The appropriate austenitizing...
Abstract
This article focuses on heat treatment of malleable and compacted-graphite irons to produce ferritic and pearlitic malleable irons. It describes the heat treatment cycles of malleable iron, including martempering, tempering, bainitic heat treatment, and surface hardening. The article provides information on the mechanical and physical properties of compacted-graphite irons, which are determined by the graphite shape and the pearlite/ferrite ratio.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006301
EISBN: 978-1-62708-179-5
... of graphite for the short time at temperatures above the transformation range. In contrast, the pearlitic grades of gray, ductile, and malleable irons readily form martensite when rapidly cooled from above the transformation range, because the combined carbon content of the pearlitic matrix is more rapidly...
Abstract
This article describes some examples of the different welding processes for gray, ductile, and malleable irons. These processes include fusion welding, repair welding, shielded metal arc welding, gas metal arc welding, flux cored arc welding, gas tungsten arc welding, submerged arc welding, oxyfuel welding, and braze welding. The article discusses various special techniques, such as groove-face grooving, studding, joint design modifications, and peening, for improving the strength of a weld or its fitness for service. The article describes other fusion welding methods such as electrical resistance welding and thermite welding. It reviews thermal spraying processes, such as flame spraying, arc spraying, and plasma spraying, of a cast iron.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006294
EISBN: 978-1-62708-179-5
..., including chemical composition, cooling rate, and heat treatment. The article describes some basic principles of cast iron metallurgy. It discusses the main effects of the chemical composition of ductile iron and compacted graphite (CG) iron. The composition of malleable irons must be selected in such a way...
Abstract
This article discusses criteria that can be used for the classification of cast iron: fracture aspect, graphite shape, microstructure of the matrix, commercial designation, and mechanical properties. It addresses the main factors of influence on the structure of cast iron, including chemical composition, cooling rate, and heat treatment. The article describes some basic principles of cast iron metallurgy. It discusses the main effects of the chemical composition of ductile iron and compacted graphite (CG) iron. The composition of malleable irons must be selected in such a way as to produce a white as-cast structure and to allow for fast annealing times. Some typical compositions of malleable irons are presented in a table. The article concludes with information on special cast irons.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003106
EISBN: 978-1-62708-199-3
..., malleable, compacted graphite, and white cast iron. A table shows the correspondence between commercial and microstructural classification, as well as final processing stage in obtaining common cast irons. carbon equivalence classification of cast irons compacted graphite iron ductile cast iron...
Abstract
Cast irons primarily are iron alloys that contain more than 2% carbon and from 1 to 3% silicon. This article provides a description of iron-iron carbide-silicon system; and discusses the classification, composition, and characteristics of cast irons, such as gray, ductile, malleable, compacted graphite, and white cast iron. A table shows the correspondence between commercial and microstructural classification, as well as final processing stage in obtaining common cast irons.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005322
EISBN: 978-1-62708-187-0
... ductility), which can be tempered (high strength and toughness). Standard or ferritic malleable iron, also called blackheart ( Fig. 4 ) (ASTM A 47, Ref 1 ), possesses a matrix of ferrite, while pearlitic malleable iron (ASTM A 220, Ref 2 ) matrices are typically tempered martensite or, less commonly...
Abstract
The term cast iron designates a group of materials that contain more than one constituent in their microstructure due to excess carbon that result in unique characteristics such as the fracture appearance and graphite morphology. This article discusses the classification of cast iron and the various metallurgical aspects, such as the composition, alloying element, solidification, and graphite morphologies, of different types of cast iron. It describes the physical properties for various cast irons and the influence of microstructure and chemical composition on each property. The article provides a detailed account on thermal properties, conductive properties, magnetic properties, and acoustic properties of cast iron. It also examines heat treatment, namely, stress relieving, annealing, normalizing, through hardening, and surface hardening. The article presents a discussion on the welding, machining and grinding, and coating of the types of cast iron.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001003
EISBN: 978-1-62708-161-0
... containing spheroidal graphite is much stronger and has higher elongation than gray iron or malleable iron. It may be considered as a natural composite in which the spheroidal graphite imparts unique properties to ductile iron. Fig. 1 Microstructures of ductile iron. (a) As-cast ferritic. (b) As-cast...
Abstract
This article discusses the compositions, properties, and typical applications for ductile irons that are defined by U.S. and international standards . It describes the various methods used to test and inspect the metallurgical control processes in ductile iron production. The article discusses the effect of composition, graphite shape, and section size on the properties of ductile iron. The article also describes the mechanical properties of ductile iron at elevated temperatures. The heat treatment of ductile iron castings produces a significant difference in mechanical properties from as-cast ductile iron. A ductile iron generally has higher hardenability than a eutectoid steel with comparable alloy content. The article also discusses the physical properties of ductile iron, including density, thermal conductivity, electrical conductivity, electrical resistivity, and magnetic properties. Ductile iron has been chosen in many instances on the basis of significantly lower machining costs, which resulted in lower overall cost of the part.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003765
EISBN: 978-1-62708-177-1
... the other. The article provides information on nearly 100 micrographs, discussing the microstructure of flake graphite in gray iron, nodular graphite in ductile iron, and temper graphite in malleable iron. It also examines the matrix microstructures of gray, ductile, compacted, and malleable cast iron...
Abstract
This article describes the metallographic specimen preparation procedures for cast iron test samples, including mounting, grinding, polishing, and etching. It discusses the makeup and use of black-and-white and selective color etchants and where one might be preferred over the other. The article provides information on nearly 100 micrographs, discussing the microstructure of flake graphite in gray iron, nodular graphite in ductile iron, and temper graphite in malleable iron. It also examines the matrix microstructures of gray, ductile, compacted, and malleable cast iron samples.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0009206
EISBN: 978-1-62708-161-0
...Abstract Abstract This article discusses the classification schemes for cast irons and describes the characteristics of major categories, including gray iron, white iron, ductile iron, compacted graphite iron, mottled iron, malleable iron, and austempered ductile iron. It also discusses some...
Abstract
This article discusses the classification schemes for cast irons and describes the characteristics of major categories, including gray iron, white iron, ductile iron, compacted graphite iron, mottled iron, malleable iron, and austempered ductile iron. It also discusses some of the basic principles of cast iron metallurgy. When discussing the metallurgy of cast iron, the main factors of influence on the structure include chemical composition, cooling rate, liquid treatment, and heat treatment. In terms of commercial status, cast irons can be classified as common cast irons and special cast irons. Special cast irons differ from the common cast irons mainly in the higher content of alloying elements. Alloying elements can be added in common cast iron to enhance some mechanical properties. They influence both the graphitization potential and the structure and properties of the matrix.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003108
EISBN: 978-1-62708-199-3
... of additives introduced in the molten iron before casting, the graphite grows as spheres, rather than as flakes of any of the forms characteristic of gray iron. Cast iron containing spheroidal graphite is much stronger and has higher elongation than gray iron or malleable iron. It may be considered a natural...
Abstract
This article provides information on the general characteristics, composition, uses, applications and specifications for standard grades of ductile iron. It describes the manufacturing and metallurgical process control procedures, including testing and inspection, and heat treatment. The article also talks about the effects of composition, graphite shape, and section size on the mechanical properties of ductile iron. Tables and graphs provide helpful information on the tensile properties, compressive properties, torsional properties, damping capacity, impact properties, fracture toughness, fatigue strength, and elevated-temperature properties of ductile iron.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003191
EISBN: 978-1-62708-199-3
.... The shape of the graphite in the iron determines the type of iron, that is, gray, ductile, malleable, or compacted graphite. The presence of graphite provides the free-machining characteristic of iron, and the shape and amount of graphite establish the potential surface finish obtainable with a cutting...
Abstract
An understanding of the influence of microstructure on machinability can provide an insight into more efficient machining and the correct solution to problems. Providing numerous microstructures to depict examples, this article describes the relationship between the microstructure and machinability of cast irons, steels, and aluminum alloys. It presents data on hardness values and the effect of the matrix microstructure of cast iron on tool life. It also explains how a higher inclusion count improves the machinability of steels and why aluminum alloys can be machined at very high speeds.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003201
EISBN: 978-1-62708-199-3
... depends on the silicon content of the iron and the temper carbon nodule count, may be increased to 85 °C/min (150 °F/min) to form a pearlitic matrix. Oil quenching from the FSG temperature following completion of that step will produce a martensitic matrix. Hardening and Tempering of Pearlitic Malleable...
Abstract
Cast irons may be compared with steels in their reactions to hardening. However, because cast irons (except white iron) contain graphite and substantially higher percentages of silicon, they require higher austenitizing temperatures. This article describes the effect of heat treatment processes such as annealing, normalizing, surface hardening, tempering, stress relieving, quenching, and austempering, on hardness and tensile properties of cast irons, namely gray irons, ductile irons, malleable irons, and austenitic irons.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006350
EISBN: 978-1-62708-179-5
... the magnetic disc approach, PSA-backed products can also be used. Colloidal silica ( Ref 1 , 2 ) can produce small etch spots on pearlite patches in ductile cast irons, so it is best to use alumina slurries if the matrix is pearlitic. For ferritic-, ausferrite-, or martensitic-matrix ductile irons, colloidal...
Abstract
Metallographic techniques for ductile irons are similar to those for other cast irons but more difficult than for steels, because graphite retention is a challenging task. This article presents recommended procedures to prepare ductile irons. It discusses three contemporary approaches for preparing ductile cast iron specimens with a wide range of phases and constituents as well as variations in graphite morphologies. A wide variety of matrix microstructures can be obtained in ductile irons. Examples are presented using a variety of etchants. Control of the nodularity of graphite in ductile irons is critical to their performance. The article presents details concerning the characterization of the graphite nodules.
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005945
EISBN: 978-1-62708-168-9
... a matrix hardness that converted to 66 HRC. Martensite in a fully hardened, high-carbon steel normally is considered to have a hardness of 63 HRC (varies with carbon content). The graphite in ductile and malleable iron will reduce the indicated hardness of martensite to between 53 to 58 HRC. On gray...
Abstract
This article introduces the general principles and applications of heat treatment to iron castings. It provides a detailed discussion on the heat treatment processes, namely, stress relieving, annealing, normalizing, throughhardening, and surface hardening for various types of cast irons. These include gray iron, ductile iron, compacted graphite iron, white iron, malleable iron, and high-alloy iron. The article describes how to control temperature and atmosphere during the heat treatment of the iron castings.