1-20 of 136 Search Results for

maraging steel microstructures

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003767
EISBN: 978-1-62708-177-1
... Abstract This article describes metallographic preparation and examination techniques for stainless steels and maraging steels. It presents a series of micrographs demonstrating microstructural features of these alloys. Procedures used to prepare stainless steels for macroscopic and microscopic...
Image
Published: 01 December 2004
Fig. 69 Martensitic microstructure of 18Ni(250) maraging steel in the (a) solution-annealed condition (305 HV) and the (b) solution-annealed and aged condition (523 HV). Revealed using modified Fry's reagent More
Image
Published: 01 December 2004
Fig. 70 Martensitic microstructure of low-residual 18Ni(250) maraging steel in the (a) solution-annealed condition (319 HV) and the (b) solution-annealed and aged condition (565 HV). Revealed using modified Fry's reagent More
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002396
EISBN: 978-1-62708-193-1
... between microstructure and fatigue resistance. These alloys classes include ferritic-pearlitic alloys, martensitic alloys, maraging steels, and metastable austenitic alloys. The article also discusses the role of internal defects and selective surface processing in influencing fatigue performance...
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001043
EISBN: 978-1-62708-161-0
... has been devoted to examining the properties of overaged maraging steels. The general belief is that a microstructure containing coarse precipitate particles and finely distributed austenite particles should have good resistance to both fracture and stress-corrosion cracking. In many instances...
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005948
EISBN: 978-1-62708-168-9
...-containing maraging steels will exhibit grain growth if exposed for more than 6 h at 955 °C (1750 °F). Cooling Rate The cooling rate following solution annealing is of little consequence because it has little to no effect on either the microstructure or mechanical properties ( Table 6 ) of maraging...
Image
Published: 01 December 2004
Fig. 71 Martensitic microstructure of solution-annealed and aged 18Ni(300) maraging steel (596 HV). Etched with modified Fry's reagent More
Image
Published: 01 December 2004
Fig. 72 Martensitic microstructure of solution-annealed and aged cobalt-free Vascomax T-250 maraging steel (535 HV). Etched with modified Fry's reagent More
Image
Published: 01 October 2014
Fig. 9 Austenite microstructure refinement by thermal cycling of 18Ni (300) Maraging steel. (a) Original specimen grain coarsened at 1150 °C (2100 °F) for 1 h and then water quenched. ASTM grain size: 1.5. (b) Specimen (a) grain refined by heating to 1025 °C (1880 °F) for 10 min and then water More
Image
Published: 01 December 2004
Fig. 39 Results from different etchants in specimen preparation of 18% Ni maraging steel (300 CVM). Solution treated 1 h at 815 °C (1500 °F), surface activated, and gas nitrided 24 h at 440 °C (825 °F). (a) Etched with nital, but this etchant does not clearly reveal the nitrided microstructure More
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002397
EISBN: 978-1-62708-193-1
.... In this article, nearly all of the data deal with ferrite-pearlite steels and steels with tempered-martensite microstructures, although some of the larger components of heat-treated or slowly cooled alloys invariably contain some bainite. Particular emphasis is given to maraging-type steels and high-strength low...
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006566
EISBN: 978-1-62708-290-7
... on intermetallic precipitation during aging are particularly susceptible to microsegregation during AM. Jägle et al. ( Ref 48 ) investigated the microstructural evolution in 18Ni-300 maraging steels produced by using SLM (cooling rate: ~10 6 K/s) and laser metal deposition (cooling rate: ~10 4 K/s) in an argon...
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002379
EISBN: 978-1-62708-193-1
... and schematically illustrates the mechanism of crack propagation. The article describes the fracture resistance of high-strength steels, aluminum alloys, titanium alloys, and composites such as brittle matrix-ductile phase composites and metal-matrix composites. It also lists the effects of microstructural...
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005960
EISBN: 978-1-62708-168-9
... hardened. This type of microstructure is similar to that of maraging steels, but the hardening precipitates in the AerMet alloys are different than that of maraging steels ( Table 8 ). The 18Ni maraging steels are hardened through the precipitation of intermetallic compounds, primarily Ni 3 Mo, Ni 3 Ti...
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.9781627081689
EISBN: 978-1-62708-168-9
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001464
EISBN: 978-1-62708-173-3
... temperatures are typically made from alloys that maintain some ductility at the service temperatures. Cryogenic alloys include 9Ni steels, austenitic stainless steels, manganese stainless steels, maraging steels, titanium, aluminum, and nickel alloys. The choice of weld-metal alloy may depend solely...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001306
EISBN: 978-1-62708-170-2
... Abstract Specialty steels encompass a broad range of ferrous alloys noted for their special processing characteristics (powder metallurgy alloys), corrosion resistance (stainless steels), wear resistance and toughness (tool steels), high strength (maraging steels), or magnetic properties...
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005407
EISBN: 978-1-62708-196-2
...) in addition to temperature also contributing to the phase fraction), can be used as separate input parameters. Sometimes, the selection is limited by data availability, but this could lead to an inadequate model if an important input variable is not included. Example 1: Maraging Steels For maraging...
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006952
EISBN: 978-1-62708-439-0
... AM materials is a yet-to-learn topic. Case Study 3—Microstructural Evolution, High-Strain-Rate Compressive Behavior of As-Built, Heat Treated Additively Manufactured Maraging Steel In a recent publication, Dehgahi et al. ( Ref 22 ) assessed microstructural evolution and high-strain-rate...
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001040
EISBN: 978-1-62708-161-0
..., solidification, and rolling practices, as well as the resulting microstructure. All carbon and high-strength low-alloy (HSLA) steels undergo a ductile-to-brittle transition as the temperature is lowered. The composition of a steel, as well as its microstructure and processing history, significantly affects both...