Skip Nav Destination
Close Modal
Search Results for
manual stereological analysis
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 22
Search Results for manual stereological analysis
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003758
EISBN: 978-1-62708-177-1
... Abstract This article reviews the essential parts of the complex process of quantitative image analysis to assist automatic image analysis in laboratories. It describes the basic difference between the bias of classical manual stereological analysis and quantitative image analysis. The article...
Abstract
This article reviews the essential parts of the complex process of quantitative image analysis to assist automatic image analysis in laboratories. It describes the basic difference between the bias of classical manual stereological analysis and quantitative image analysis. The article concentrates on the basic properties of digital measurements that are the core of quantitative image analysis. It provides a brief description of the specimen and apparatus preparation as well as the image acquisition. The article explains how to evaluate stereological parameters and provides the general rules and guidelines for optimization of image processing algorithms from the viewpoint of shape quantification. It concludes with examples that demonstrate the usefulness of automatic image analysis in comparison to manual methods.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006682
EISBN: 978-1-62708-213-6
... by using automatic image analyzers. In this article, the basic rules of stereology are described with emphasis on how these procedures are applied manually, which should be understood before using image analysis for the measurements. Image analysis users must understand these principles before...
Abstract
This article reviews many commonly used stereological counting measurements and the relationships based on these parameters. The discussion covers the processes involved in sampling and specimen preparation. Quantitative microstructural measurements are described including volume fraction, number per unit area, intersections and intercepts per unit length, grain size, and inclusion content.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001755
EISBN: 978-1-62708-178-8
... analyzers metallography microscopy microstructure quantitative determination sample preparation Overview Introduction Image analysis minimizes the influence of operator fatigue, which reduces the accuracy and reproducibility of manual measurements. In addition, although microstructural...
Abstract
This article describes the various steps involved in image analysis, including sample selection and preparation, image preprocessing, measurement, and data analysis and output. It reviews various types of image analyzers and explains how operator bias and poor sample selection and preparation practices can lead to measurement error. It also examines several applications, illustrating how microstructural measurements can be used to assess quality control and better understand how processing changes affect microstructure and, in turn, material properties and behavior.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003248
EISBN: 978-1-62708-199-3
... have been developed, ASTM E 1122 and E 1245. E 1122 produces JK ratings that overcome some of the weaknesses of manual JK ratings. E 1245 is a stereological approach defining, for oxides and sulfides, the volume fraction ( V V ), number per unit area ( N A ), average length, average area...
Abstract
Quantifying microstructural parameters has received considerable attention and success in developing procedures and using such data to develop structure/property relationships has been achieved. This article reviews many of the simple stereological counting measurements of volume fraction, grain structure (two-phase grain structures, and nonequiaxed grain structures), grain size, and inclusion content. It also reviews simple relationships between number of grains per unit area, number of intersections of a line of known length with particle or grain, and number of interceptions of particles or grains by a line of known length.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003759
EISBN: 978-1-62708-177-1
... in the disciplines of stochastic geometry ( Ref 1 ), integral geometry and global analysis ( Ref 2 ), and differential geometry ( Ref 3 ). The stereological methods are completely general, and therefore they are also applicable to microstructures encountered in many other disciplines, including biology ( Ref 4...
Abstract
The objective of quantitative metallography/stereology is to describe the geometric characteristics of the features. This article discusses the geometric attributes of microstructural features that can be divided into: the numerical extents and the number density of microstructural features; derived microstructural properties; feature specific size, shape, and orientation distributions; and descriptors of microstructural spatial clustering and correlations. It emphasizes on the practical aspects of the measurement techniques and applications. The article also provides information on the quantitative metallographic methods for estimation of volume fraction, total surface area per unit volume, and total length of per unit volume.
Book: Fractography
Series: ASM Handbook Archive
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0001837
EISBN: 978-1-62708-181-8
..., although manual methods offer efficient alternatives in some cases. Instrumentation, principles, and applications associated with image analysis systems are discussed in the article “Image Analysis” in Volume 10 of ASM Handbook, formerly 9th Edition of Metals Handbook. Treatment of the basic data...
Abstract
The principal objective of quantitative fractography is to express the characteristics of features in the fracture surface in quantitative terms, such as the true area, length, size, spacing, orientation, and location. This article provides a detailed account of the development of more quantitative geometrical methods for characterizing nonplanar fracture surfaces. Prominent techniques for studying fracture surfaces are based on the projected images, stereoscopic viewing, and sectioning. The article provides information on various roughness and materials-related parameters for profiles and surfaces. The applications of quantitative fractography for striation spacings, precision matching, and crack path tortuosity are also discussed.
Book Chapter
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003720
EISBN: 978-1-62708-177-1
... Abstract This article provides an overview of the origin of metallography. It presents information on how to select a section from a specimen and prepare it for macroscopic analysis. The article describes the macroscopic analysis of steel fracture surfaces with emphasis on ductile, brittle...
Abstract
This article provides an overview of the origin of metallography. It presents information on how to select a section from a specimen and prepare it for macroscopic analysis. The article describes the macroscopic analysis of steel fracture surfaces with emphasis on ductile, brittle, and fatigue fracture with illustrations. It discusses microanalysis with a focus on the method of light microscopy and includes information of scanning electron microscope in fractography. The article also explains the characteristics of solidification, transformation, deformation structures, and discontinuities that are present in a microstructure. It concludes with information on image analysis.
Book Chapter
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 June 2024
DOI: 10.31399/asm.hb.v12.a0007033
EISBN: 978-1-62708-387-4
... Abstract The development of quantitative fractography (QF) parameters basically requires topological data of a fracture surface that can be derived from the stereological analysis of multiple projected scanning electron microscope (SEM) images; the profilometry-based techniques that measure...
Abstract
The development of quantitative fractography (QF) parameters basically requires topological data of a fracture surface that can be derived from the stereological analysis of multiple projected scanning electron microscope (SEM) images; the profilometry-based techniques that measure the fracture surface profile along x-y sections of a fracture surface from metallographic sections or nondestructive techniques; and the three-dimensional reconstruction of the fracture surface topology using imaging methods such as stereo SEM imaging and confocal scanning laser microscopy. These three general methods of assessing fracture surface topology are reviewed in this article.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003536
EISBN: 978-1-62708-180-1
.... Development of the scanning electron microscope (SEM), and more recently, of powerful digital image analysis equipment, has led to significant advances in quantitative fractography. Numerous quantitative correlations between the material properties such as strength, ductility, toughness, and fatigue life...
Abstract
The quantitative characterization of fracture surface geometry, that is, quantitative fractography, can provide useful information regarding the microstructural features and failure mechanisms that govern material fracture. This article is devoted to the fractographic techniques that are based on fracture profilometry. This is followed by a section describing the methods based on scanning electron microscope fractography. The article also addresses procedures for three-dimensional fracture surface reconstruction. In each case, sufficient methodological details, governing equations, and practical examples are provided.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005528
EISBN: 978-1-62708-197-9
... validated finite-element models for analyzing the classes of shearing processes. The article also discusses the use of microstructural characterization with stereology to render three-dimensional volumetric parameters. It concludes with information on the numerical simulation of an edge-shearing process...
Abstract
This article discusses a set of experimental and computational studies aimed at understanding the effect of various processing parameters on the extent of burr and other defect formation during sheet edge-shearing and slitting processes. It describes the development of experimentally validated finite-element models for analyzing the classes of shearing processes. The article also discusses the use of microstructural characterization with stereology to render three-dimensional volumetric parameters. It concludes with information on the numerical simulation of an edge-shearing process, along with sensitivity studies with respect to process and tool parameters.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003532
EISBN: 978-1-62708-180-1
... Abstract This article provides a discussion on the metallographic techniques used for failure analysis, and on fracture examination in materials, with illustrations. It discusses various metallographic specimen preparation techniques, namely, sectioning, mounting, grinding, polishing...
Abstract
This article provides a discussion on the metallographic techniques used for failure analysis, and on fracture examination in materials, with illustrations. It discusses various metallographic specimen preparation techniques, namely, sectioning, mounting, grinding, polishing, and electrolytic polishing. The article also describes the microstructure examination of various materials, with emphasis on failure analysis, and concludes with information on the examination of replicas with light microscopy.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005504
EISBN: 978-1-62708-197-9
... and Shiflet combined serial sectioning, scanning electron microscopy, manual electron backscatter diffraction (EBSD) analysis, and computerized 3-D reconstruction techniques in a high-manganese steel to produce digital 3-D reconstructions of pearlite colonies in which the crystallographic orientation of each...
Abstract
This article reviews the characterization methods for producing 3-D microstructural data sets. The methods include serial sectioning by mechanical material removal method and focused ion beam tomography method. The article describes how these data sets are used in realistic 3-D simulations of microstructural evolution during materials processing and materials response. It also explains how the 3-D experimental data are actually input and used in the simulations using phase-field modeling and finite-element modeling.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006116
EISBN: 978-1-62708-175-7
...: Part and cross section are not used to represent the typical or desired microstructure. Stereological or image analysis testing is usually performed on these specimens. Figures 2 and 3 represent cross-sectional areas that could fit into several of the sample selection categories mentioned...
Abstract
Metallographic analysis is primarily a collection of visual and imaging techniques that provide an insight into the background of a material or part and its behavior. Metallic specimens, both porous and pore-free, are opaque, and as a result, an optical examination must be performed on carefully prepared planar (two-dimensional) surfaces. This article discusses the preparation sequence of ferrous powders, which is normally separated into several well-defined steps: sample selection, sectioning, mounting, grinding, polishing, drying, and chemical etching and/or coating. It provides several suggestions to promote and encourage the safety of those performing metallographic preparation and analysis.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003791
EISBN: 978-1-62708-177-1
.... , Microstructural Index to Quantify Thermal Spray Deposit Microstructures Using Image Analysis , J. Therm. Spray Technol. , Vol 7 ( No. 2 ), June 1998 , p 229 – 241 10.1361/105996398770350972 15. Fowler D.B. , A Method for Evaluating Plasma Spray Coating Porosity Content Using Stereological...
Abstract
This article reviews how process variations influence the characteristics of thermal spray coatings. It describes various specimen preparation techniques, which allow accurate microstructural analysis. These techniques include sectioning, cleaning, mounting, planar grinding, fine grinding, rough polishing, and etching. The article provides information on the problems associated with specimen preparation. It concludes with a discussion on the various methods of analysis for thermal spray coatings.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003797
EISBN: 978-1-62708-177-1
... (45 lbf) normal to the sample is also necessary. Although it is possible to grind and polish manually, the effort and time required as well as requirements for reproducibility generally rule out these techniques ( Ref 1 ). All the micrographs in this article are from specimens prepared using...
Abstract
This article contains tables that list standard reduction potentials for electrochemical reactions. The first table lists reactions alphabetically by element of interest. The second table is ranked by potential value. Potential is measured versus the Standard Hydrogen Electrode which has a value of 0.0000 V. Reactions with more than one voltage indicate that results have not been reconciled. Parenthetical materials not needed to balance reactions are catalysts.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006660
EISBN: 978-1-62708-213-6
..., and the crystallographic character of the grain and phase boundaries. Especially when combined with other SEM-based techniques, such as energy-dispersive and wavelength-dispersive analysis of composition, phase identification is also possible. The use of EBSD has now become a “must have” SEM accessory for any...
Abstract
The electron backscatter diffraction (EBSD) technique has proven to be very useful in the measurement of crystallographic textures, orientation relationships between phases, and both plastic and elastic strains. This article focuses on backscatter diffraction in a scanning electron microscope and describes transmission Kikuchi diffraction. It begins with a discussion on the origins of EBSD and the collection of EBSD patterns. This is followed by sections providing information on EBSD spatial resolution and system operation of EBSD. Various factors pertinent to perform an EBSD experiment are then covered. The article further describes the processes involved in sample preparation that are critical to the success or usefulness of an EBSD experiment. It also discusses the applications of EBSD to bulk samples and the development of EBSD indexing methods.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.9781627082136
EISBN: 978-1-62708-213-6
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005729
EISBN: 978-1-62708-171-9
... Abstract Metallographic examination is a critical step in the assessment of thermal spray coating characteristics. This article discusses the major steps involved in metallographic examination: sectioning, mounting, grinding, polishing, optical microscopy, and image analysis. It provides...
Abstract
Metallographic examination is a critical step in the assessment of thermal spray coating characteristics. This article discusses the major steps involved in metallographic examination: sectioning, mounting, grinding, polishing, optical microscopy, and image analysis. It provides a discussion on etching to reveal grain structure. The article also provides recommendations for metallographic examination of some standard coatings.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.9781627081788
EISBN: 978-1-62708-178-8
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005501
EISBN: 978-1-62708-197-9
... investigated extensively. The incorporation of these principles into the more traditional thermal, fluid flow, and stress models enable quantitative predictions of microstructure and mechanical properties, such as tensile strength and elongation. The coupling of mechanical analysis with thermal analysis...
Abstract
This article reviews the topic of computational thermodynamics and introduces the calculation of solidification paths for casting alloys. It discusses the calculation of thermophysical properties and the fundamentals of the modeling of solidification processes. The article describes several commonly used microstructure simulation methods and presents ductile iron casting as an example to demonstrate the ability of microstructure simulation. The predictions for the major defects of casting, such as porosity, hot tearing, and macrosegregation, are highlighted. Finally, several industry applications are presented.
1