Skip Nav Destination
Close Modal
Search Results for
mandrel selection
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 269 Search Results for
mandrel selection
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001263
EISBN: 978-1-62708-170-2
..., cobalt, iron, and copper, providing information on mandrel design and selection, electroforming solutions and operating variables. It discusses the significant aspects of electroforming that demand special considerations, such as metal distribution, internal deposit stress, roughness, and treeing...
Abstract
Electroforming is the process by which articles or shapes can be exactly reproduced by electrodeposition on a mandrel or form that is later removed, leaving a precise duplicate of the original. This article discusses electroforming applications, and explains electroforming of nickel, cobalt, iron, and copper, providing information on mandrel design and selection, electroforming solutions and operating variables. It discusses the significant aspects of electroforming that demand special considerations, such as metal distribution, internal deposit stress, roughness, and treeing. The article concludes with an overview of alloy electroforming.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003416
EISBN: 978-1-62708-195-5
... Abstract Filament winding is a process for fabricating a composite structure in which continuous reinforcements, either previously impregnated with a matrix material or impregnated during winding, is placed over a rotating form or mandrel in a prescribed way to meet certain stress conditions...
Abstract
Filament winding is a process for fabricating a composite structure in which continuous reinforcements, either previously impregnated with a matrix material or impregnated during winding, is placed over a rotating form or mandrel in a prescribed way to meet certain stress conditions. This article describes the advancements in filament winding and lists the advantages and disadvantages of filament winding. It discusses the effects of fiber tension in filament winding and the selection of fibers, resins, and materials for filament winding. The article emphasizes the three basic filament-winding patterns, such as helical, polar, and hoop. It presents information on the applications of filament winding, including rocket motors, natural gas vehicle (NGV) tanks, and sporting goods. The article presents recommendations for the basic design guidelines for filament-winding design/manufacturing process and concludes with a discussion on fabrication recommendations.
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005135
EISBN: 978-1-62708-186-3
... a constant flow of lubricant inside the tube during bending. The lubricant was a mixture of lard oil and low-viscosity mineral oil. Mandrel Materials Most mandrels are made of tool steel (W1, O1, A2, and F1 are typical selections) and hardened to 55 to 60 HRC. Polished mandrels usually work best...
Abstract
This article begins with a discussion on the factors considered in the selection of bending methods. It presents a detailed description of the types of bending method, machines and tools used in the bending and forming of tubing. The article provides an overview of bending tubing with and without a mandrel and hot bending. It concludes with a discussion on the bending of thin-wall tubes and lubrication for tube bending.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003404
EISBN: 978-1-62708-195-5
... manufacturer in producing a high-quality mandrel. Additional guidelines are provided in ASTM B 832 and the other sources cited in the list of Selected References at the end of this article. The quality of the face coat on the mandrel is important not only to ensure the correct contour, but also...
Abstract
This article describes the factors to be considered while performing electroforming process. The factors include the shape and size of the mold, expected durability of the mold, required delivery time, and manufacture and cost of the necessary mandrel. The article discusses mandrel fabrication by either the use of fiberglass/resins or by the machining of the mandrel directly from computer-aided design data. It provides a comparison of nickel and other tooling materials in terms of coefficients of thermal expansion, thermal cycles for compression molding, and thermal cycles for metal autoclave molds.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005123
EISBN: 978-1-62708-186-3
... in the tailstock and headstock, respectively. Dimensions given in inches The materials used for the mandrels for cone spinning are selected primarily on the basis of the desired mandrel life. The most commonly used materials are cast irons and tool steels; the actual mandrel material selection depends...
Abstract
Metal spinning is a term used to describe the forming of metal into seamless, axisymmetric shapes by a combination of rotational motion and force. This article describes two forming techniques, such as manual spinning and power spinning, for forming seamless metal components. The process technology, equipment, and tooling for both manual spinning and power spinning are also discussed.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003039
EISBN: 978-1-62708-200-6
... with the mandrel rotation to deliver the roving from a wind eye at various winding angles for the selected winding pattern. Currently there is a great variety of winding equipment commercially available to wind helical, polar, or hoop patterns (refer to the section “Winding Patterns” in this article). The bulk...
Abstract
Filament winding is a process that allows the precise lay-down of continuous reinforcement in predescribed patterns at a high rate of speed. This article discusses the filament winding process and includes a comparison to other compacting and curing processes. The article describes design factors, and techniques to produce aerodynamic surfaces, improve surface smoothness, and avoid slipping and bridging of filament. The article discusses tooling and the equipment used in the filament winding process, namely, mandrel design, winding machines, tensioners, and ovens.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003178
EISBN: 978-1-62708-199-3
.... The article also discusses the machines and tools, including dies and mandrels, and lubricants used for these metal forming operations. bars bending drawing forming rods spinning straightening tubes wires Wire, Rod, and Tube Drawing IN THE DRAWING PROCESS, the cross-sectional area...
Abstract
This article discusses the mechanics, surface preparation and principles of metal forming operations such as drawing, bending (draw bending, compression bending, roll bending, and stretch bending), spinning, and straightening of bars, tubes, wires, rods and structural shapes. The article also discusses the machines and tools, including dies and mandrels, and lubricants used for these metal forming operations.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001382
EISBN: 978-1-62708-173-3
...°. It is important for the latter angle to be less than that of the groove in order to limit the initial peak torque and also to promote metal flow from the bottom of the groove in an outward direction toward the outside diameter. Optimum angles for selected sizes of tubes and pipes are determined experimentally...
Abstract
This article provides information on radial friction welding, which adopts the principle of rotating and compressing a solid ring around two stationary pipe. The process evolution of this welding is illustrated. The article also examines the equipment used and operating steps. It also illustrates a prototype of radial friction-welding machine and concludes with a discussion on applications that would be suitable for radial friction welding.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003983
EISBN: 978-1-62708-185-6
.... It describes the types of rotary swaging machines, auxiliary tools, and swaging dies used for rotary swaging and the procedure for determining the side clearance in swaging dies. The article presents an overview of automated swaging machines and tube swaging, with and without a mandrel. It analyzes the effect...
Abstract
Rotary swaging is an incremental metalworking process for reducing the cross-sectional area or otherwise changing the shape of bars, tubes, or wires by repeated radial blows with two or more dies. This article discusses the applicability of swaging and metal flow during swaging. It describes the types of rotary swaging machines, auxiliary tools, and swaging dies used for rotary swaging and the procedure for determining the side clearance in swaging dies. The article presents an overview of automated swaging machines and tube swaging, with and without a mandrel. It analyzes the effect of reduction, feed rate, die taper angle, surface contaminants, lubrication, and material response on swaging operation. The article discusses the applications for which swaging is the best method for producing a given shape, and compares swaging with alternative processes. It concludes with a discussion on special applications of swagging.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003418
EISBN: 978-1-62708-195-5
... a light sanding/polishing operation after curing. In addition, the process uses inexpensive durable mandrels. Part shapes can be cylindrical, conical, circular, oval, or any combination of these shapes. Fiber orientation can range from 0 to 90°. Disadvantages include size limitation and higher material...
Abstract
This article describes processes and equipment that are used to produce composite tubular parts. The processes include sheeting, pattern cutting, tube rolling, shrink tape debulking, and finishing. The article provides a discussion on materials that are most suitable for tube rolling: preimpregnated materials and unidirectional tapes. The article also discusses wrapping techniques of cylindrical and tapered tubes, such as convolute and spiral wrapping.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003982
EISBN: 978-1-62708-185-6
..., radial-axial horizontal rolling machines, four-mandrel mechanical table mills, three-mandrel table mills, and automatic radial-axial multiple-mandrel ring mills. The article provides a discussion on the process control technology and ancillary operations of ring rolling. It describes the methods...
Abstract
Ring rolling is a process for creating seamless ring shaped components using specialized equipment and forming processes. This article provides information on the applications of ring rolling. It discusses the types of machines used for ring rolling, namely, vertical rolling machines, radial-axial horizontal rolling machines, four-mandrel mechanical table mills, three-mandrel table mills, and automatic radial-axial multiple-mandrel ring mills. The article provides a discussion on the process control technology and ancillary operations of ring rolling. It describes the methods of producing ring blanks and the various types of blanking and rolling tools used in ring rolling process. The article concludes with a discussion on rolled ring tolerances and machining allowances.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004014
EISBN: 978-1-62708-185-6
... to the outside diameter of a cylindrical preform, attached to a rotating mandrel. Compression is applied by a combination of axial and radial forces using a set of three or four rollers that are simultaneously moved along the length of the rotating preform, flowing the material plastically in both radial...
Abstract
A wide range of flow-formed open- and close-ended shapes are currently available in a variety of difficult-to-form materials, including titanium alloys and nickel-base super alloys. This article describes the two basic methods of flow forming that are characterized by the position of the rolls during the forming process. The flow forming methods include staggered-roll flow forming process and in-line flow-forming process. Typical mechanical properties of flow-formed materials in various conditions are summarized in a table. Proper process controls and subsequent product qualification tests are critical to assure optimal performance of the flow-formed tubular component. The article discusses the most commonly required process control parameters and the effects of forming speed and temperature in the flow forming process.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004010
EISBN: 978-1-62708-185-6
... that generally denotes cold forming of plate, sheet, bars, beams, pipe, or angular cross section lengths into selected shapes by passing the metal workpiece between three correctly spaced rolls ( Ref 1 , 5 ). The roll forming process employs pairs of small opposed rollers to shape a cylindrical workpiece...
Abstract
This article describes the roll forming of components of nickel, titanium, and aluminum alloys. The metallurgical characteristics of the roll formed components, such as macrostructures, microstructures, tensile strength, and stress rupture performance, are discussed. The article compares the resulting properties of roll formed and conventionally forged components.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003984
EISBN: 978-1-62708-185-6
... axisymmetric bars can also be produced with a radial forge. Coupled with mandrels, tubing and other hollows can also be produced on the radial forge. In part production, radial forging is used to form axial symmetric solids or hollows with complex external and/or internal contours. These parts can be forged...
Abstract
Radial forging is a process performed with four dies arranged in one plane that can act on a piece simultaneously. This article explains the types of radial forgings and describes the advantages and disadvantages of radial forging over open-die cogging/forging. The article discusses the parameters involved in product shape control. It also provides examples that illustrate the versatility and capabilities of the radial forge machine.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002465
EISBN: 978-1-62708-194-8
... are initially optimized approximately by the “rule of mixtures” to help meet the composite properties needed for the design application engineering criteria for product operation and performance. In addition, the selection of the ratio of matrix to reinforcement constituents is influenced by the loading...
Abstract
This article describes the interaction of composition, manufacturing process, and composite properties of composites. The manufacturing process includes resin-matrix, metal-matrix, and carbon/carbon matrix processing. The article discusses various mechanical properties of composites. It explores how variations in the composition, manufacturing, shop process instructions, and loading/environmental conditions can affect the use of a composite product in a performance/service life operation.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006534
EISBN: 978-1-62708-207-5
... alloy. For this reason, the maximum exit speed ( V max in Fig. 15 ), which ensures obtaining a product without surface tearing, has been frequently suggested as a measure of extrudability. An additional advantage of selecting maximum exit speed as a measure of extrudability is the fact...
Abstract
This article describes the direct hot extrusion process and the typical sequence of operations for producing extruded aluminum shapes from soft and medium-grade aluminum alloys, hard alloys, and aluminum-matrix composites. It discusses key process variables, including extrusion speed and exit temperature, and their effect on product quality. The article also provides information on extrusion presses, press dies, and tooling, and addresses quality issues such as surface defects, blistering, and internal cracking. It concludes with a discussion on the drawing of solid section and aluminum tube.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003041
EISBN: 978-1-62708-200-6
... for Autoclave Molding In selecting materials for use in preparing a laminate for curing, cure temperatures and pressures must be considered, as well as compatibility of the processing materials with the matrix system. The importance of proper techniques and materials in layup preparation cannot...
Abstract
Autoclave molding is a process used to impart a controlled heat and pressure cycle cure to a layup. This article describes the materials used for preparing a layup, including peel ply, separator, bleeder, barrier, breather, dam, and vacuum bag. It describes the major elements and functions of an autoclave system, including pressure vessel, gas stream heating and circulation sources, gas stream pressurizing systems, vacuum systems, control systems, and loading systems. The article includes information about modified autoclaves for specialized applications and safety practices in autoclave molding. It also describes the tooling configuration and type of tooling which includes aluminum and steel tooling, electroformed nickel tooling, graphite-epoxy tooling, and elastomeric tooling.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003132
EISBN: 978-1-62708-199-3
... Abstract This article discusses the applications and tensile properties of selected copper tube alloys, as well as the methods for producing copper tubular products, namely extrusion and rotary piercing. It explains the methods available for the finishing of copper tubular products...
Abstract
This article discusses the applications and tensile properties of selected copper tube alloys, as well as the methods for producing copper tubular products, namely extrusion and rotary piercing. It explains the methods available for the finishing of copper tubular products, such as tube welding, cold drawing, and tube reducing. The article lists the standard dimensions and tolerances for several kinds of copper tubes and pipes in the ASTM specifications, along with other requirements for the tubular products.
Book Chapter
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004008
EISBN: 978-1-62708-185-6
... without a mandrel ( Fig. 3 ), also called tube sinking, the tube is initially pointed to facilitate feeding through the die; it is then reduced in outside diameter while the wall thickness and the tube length are increased. The magnitudes of thickness increase and tube elongation depend on the flow stress...
Abstract
The drawing process, one of the oldest metal forming operations, allows excellent surface finishes and closely controlled dimensions to be obtained in long products that have constant cross sections. This article discusses the basic mechanics and preparation steps of drawing. It presents an overview of the processes, equipment, dies and die materials, and lubrication associated with drawing of rod, wire, bar, and tube. The article also provides a discussion on the design considerations and manufacturing of commercial superconducting multifilamentary conductors.
Book Chapter
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003978
EISBN: 978-1-62708-185-6
..., and such forgings are produced only under unusual circumstances. Generally, most open-die forgings can be grouped into four categories: cylindrical (shaft-type forgings symmetrical about the longitudinal axis), upset or pancake forgings, hollow (including mandrel and shell-type forgings), and contour-type forgings...
Abstract
Open-die forging can be distinguished from most other types of deformation processes in that it provides discontinuous material flow as opposed to continuous flow. This article describes the equipment and auxiliary tools used in open-die forging. It discusses the production and practice of open-die forging, with some practical examples. The article illustrates macrosegregation in a large steel ingot and lists the forgeable alloys. It reviews the physical and mathematical models used in deformation modeling. The article explains the contour forging and roll planishing process. It inform that to ensure that forgings can be machined to correct final measurements, it is necessary to establish allowances, tolerances, and specifications for flatness and concentricity. The article also tabulates the allowances and tolerances for as-forged shafts and bars.
1