Skip Nav Destination
Close Modal
Search Results for
magnetic resonance
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 275 Search Results for
magnetic resonance
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001752
EISBN: 978-1-62708-178-8
... Abstract Nuclear magnetic resonance (NMR) is a form of radio frequency spectroscopy based on interactions between nuclear magnetic dipole or electric quadrupole moments and an applied magnetic field or electric-field gradient. This article provides an overview of the fundamental principles...
Abstract
Nuclear magnetic resonance (NMR) is a form of radio frequency spectroscopy based on interactions between nuclear magnetic dipole or electric quadrupole moments and an applied magnetic field or electric-field gradient. This article provides an overview of the fundamental principles of nuclear magnetic resonance with emphasis on nuclei properties, the basic equation of nuclear magnetic resonance, the classical theory of nuclear magnetization, line broadening, and measurement sensitivity. It describes the pulse-echo method for observing NMR. The article provides useful information on ferromagnetic nuclear resonance and nuclear quadrupole resonance, and illustrates the experimental arrangement of NMR with a block diagram. It also presents several application examples.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006650
EISBN: 978-1-62708-213-6
... Abstract This article focuses on the application of solid-state nuclear magnetic resonance (NMR) spectroscopy in materials science, especially for inorganic and organic polymer solids. It begins with a discussion on the general principles of NMR, providing information on nuclear spin...
Abstract
This article focuses on the application of solid-state nuclear magnetic resonance (NMR) spectroscopy in materials science, especially for inorganic and organic polymer solids. It begins with a discussion on the general principles of NMR, providing information on nuclear spin descriptions and line narrowing and spectral resolution and describing the impact of magnetic field on nuclear spins and the factors determining resonance frequency. This is followed by a description of various systems and equipment necessary for NMR spectroscopy. A discussion on general sampling for solid-state NMR, sample-spinning requirements, and extraneous signals is then included. Various factors pertinent to accurate calibration of the NMR spectrum are also described. The article provides information on some of the parameters both beneficial and problematic for processing NMR data. It ends with a description of the applications of NMR in glass science and ceramics.
Image
Published: 15 December 2019
Fig. 2 Simple block diagram of a modern nuclear magnetic resonance (NMR) instrument. Key components involved in generation of radio frequency (RF) and detection of NMR signal are shown. Other important components, as well as second and third RF channels, are omitted for clarity.
More
Image
Published: 15 December 2019
Fig. 3 Photo of a standard magic-angle spinning (MAS) nuclear magnetic resonance (NMR) probe (Chemagnetics/Varian wide-bore design, 89 mm, or 3.5 in.). The sample rotor is inserted into the MAS housing through the opening near the top of the probe. Air attachments, for both drive and bearing
More
Image
Published: 15 December 2019
Fig. 5 A 9.5 mm (0.37 in.) magic-angle spinning nuclear magnetic resonance (MAS NMR) rotor (drive tip not fully inserted for clarity) along with a typical glass insert that can contain nonsolid samples and fit tightly into the zirconia rotor for standard MAS NMR experiments. A synthetic
More
Image
Published: 15 December 2019
Fig. 6 The 31 P nuclear magnetic resonance (NMR) spectra of crystalline Sn 2 P 2 O 7 at 11.7 T (ω L = 202 MHz) using a 3.2 mm (0.13 in.) magic-angle spinning (MAS) NMR probe. The spectrum in (a) was obtained under static conditions (i.e., no sample spinning), while the other spectra were
More
Image
Published: 15 December 2019
Fig. 7 Idealized diagram of nuclear magnetic resonance (NMR) signal as a function of radio-frequency (RF) pulse width. Maximum signal can be achieved by applying a 90° or π/2 pulse width.
More
Image
Published: 15 December 2019
Fig. 8 The 31 P magic-angle spinning nuclear magnetic resonance spectra of crystalline Sn 2 P 2 O 7 with (a) no apodization and (b) 200 Hz Gaussian line broadening. Only the isotropic peaks due to the two Q 1 polyhedra are shown.
More
Image
Published: 15 December 2019
Fig. 9 The 31 P magic-angle spinning nuclear magnetic resonance spectra of glassy 10Na 2 O·45CaO·45P 2 O 5 . (a) Spectrum showing only the isotropic peaks. (b) Full spectrum with all spinning sidebands (ssb). Gaussian fits to the isotropic peaks and associated spinning sidebands are shown
More
Image
Published: 15 December 2019
Fig. 10 Examples of (a) 11 B magic-angle spinning nuclear magnetic resonance (MAS NMR) spectrum (16.4 T) of a sodium borosilicate glass with composition of 33Na 2 O-53B 2 O 3 -14SiO 2 and (b) 27 Al MAS NMR spectrum (16.4 T) of a glass with composition of 20CaO-30Al 2 O 3 -50SiO 2
More
Image
Published: 15 December 2019
Fig. 11 The 29 Si magic-angle spinning nuclear magnetic resonance spectrum of a cordierite (aluminosilicate) ceramic. This ceramic contains two different tetrahedral sites, denoted T 1 and T 2 , each of which is occupied by silicate tetrahedra having different numbers of next-nearest
More
Image
Published: 15 December 2019
Fig. 12 Additional examples of solid-state nuclear magnetic resonance studies of ceramics. (a) 27 Al magic-angle spinning nuclear magnetic resonance (MAS NMR) spectrum of γ-alumina, showing resolution of aluminum in tetrahedral and octahedral sites. (b) 1 H MAS NMR spectrum of H-ZSM-5
More
Image
Published: 15 December 2019
Fig. 13 Solid-state magic-angle spinning nuclear magnetic resonance (NMR) spectra of (a) 29 Si and (b) 27 Al in a β-spodumene glass-ceramic, before and after heat treatment. Spinning sidebands are marked as “ssb,” and dashed curves denote fitted peaks.
More
Image
Published: 15 May 2022
Image
Published: 15 May 2022
Fig. 13 Nuclear magnetic resonance spectra of polypropylene. (a) Isotactic, (b) Syndiotactic. CH, tertiary carbon group along the polypropylene chain; CH2, methylene groups along the polypropylene chain (internal) or some methylene groups that occur as C=CH2 along the chain, CH2 being a side
More
Image
Published: 01 February 2024
Fig. 2 1 H nuclear magnetic resonance spectrum at 500 MHz and assignment of peaks present in vegetable oils
More
Image
Published: 01 February 2024
Fig. 3 13 C nuclear magnetic resonance spectrum at 200 MHz and assignment of peaks present in soybean oil
More
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001112
EISBN: 978-1-62708-162-7
..., thermonuclear fusion, and nuclear magnetic resonance. cold processing fabrication technology hot processing superconducting properties ternary molybdenum chalcogenides THE TERNARY MOLYBDENUM CHALCOGENIDES have generated many fundamental as well as applied research efforts since their discovery...
Abstract
Ternary molybdenum chalcogenides stands for a vast class of materials, whose general formula is MxMO6X8, where, M is a cation and X is a chalcogen (sulfur, selenium, or tellurium). Possible applications of some of these are as high field superconductors (that is, >20 T, or 200 kG). This article discusses the fabrication methods of PbMo6S8 (PMS) and SnMo6S8 (SMS), including hot processing and cold processing. It provides a short note on the superconducting properties of PMS wire filaments and their applications in processes requiring high magnetic fields, such as high-energy physics, thermonuclear fusion, and nuclear magnetic resonance.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006931
EISBN: 978-1-62708-395-9
... the characterization of plastics by infrared and nuclear magnetic resonance spectroscopy, differential scanning calorimetry, differential thermal analysis, thermogravimetric analysis, thermomechanical analysis, and dynamic mechanical analysis. The article also discusses the use of X-ray diffraction for analyzing...
Abstract
This article presents tools, techniques, and procedures that engineers and material scientists can use to investigate plastic part failures. It also provides a brief survey of polymer systems and the key properties that need to be measured during failure analysis. It describes the characterization of plastics by infrared and nuclear magnetic resonance spectroscopy, differential scanning calorimetry, differential thermal analysis, thermogravimetric analysis, thermomechanical analysis, and dynamic mechanical analysis. The article also discusses the use of X-ray diffraction for analyzing crystal phases and structures in solid materials.
Image
Published: 15 December 2019
Fig. 15 The 13 C cross-polarization magic-angle spinning nuclear magnetic resonance spectrum of silica gel treated with γ-aminopropyl triethoxysilane. Two resonances from unreacted ethoxide functionality are identified, and the other three resonances are from the aminopropyl group
More
1