Skip Nav Destination
Close Modal
Search Results for
magnetic phase transition temperature
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 433 Search Results for
magnetic phase transition temperature
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book: Alloy Phase Diagrams
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006248
EISBN: 978-1-62708-163-4
...Abstract Abstract This article provides a table that lists the magnetic phase transition temperatures of various chemical elements. chemical elements magnetic phase transition temperatures MAGNETIC PHASE TRANSITION, and other higher-order transitions of the chemical elements...
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005441
EISBN: 978-1-62708-196-2
... allotropic structures, and magnetic phase transition temperatures of the elements. physical constants standard atomic weight melting point atomic size parameter heat of transition thermal properties temperature-dependent allotropic structure physical properties pressure-dependent allotropic...
Abstract
This article presents a comprehensive collection of tables that list fundamental physical constants, standard atomic weights, melting points, atomic size parameters, heats of transition, thermal properties, temperature-dependent allotropic structures, pressure-dependent allotropic structures, and magnetic phase transition temperatures of the elements.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003086
EISBN: 978-1-62708-199-3
... of the saturation magnetic moment of a material is the ratio of the magnetic moment per atom of the material at magnetic saturation to the spin magnetic moment per electron in the material. Magnetic phase transition temperatures of metallic elements Table 3 Magnetic phase transition temperatures of metallic...
Abstract
Material properties are the link between the basic structure and composition of the material and the service performance of a part or component. This article describes the most significant properties that must be considered when choosing a metal for a given application, namely physical properties (mass characteristics and thermal, electrical, magnetic, radiation, and optical properties), chemical properties (corrosion and oxidation resistance) and mechanical properties (tensile and yield strength, elongation, toughness, hardness, creep, and fatigue). The article also contains tables that list room-temperature physical properties, vapor pressures, and mechanical properties for various metals.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001095
EISBN: 978-1-62708-162-7
...Glass transition temperature (<italic>T</italic><sub>g</sub>) and crystallization temperature (<italic>T</italic><sub>x</sub>) of metal-metal and metal-metalloid metallic glasses Table 1 Glass transition temperature ( T g ) and crystallization temperature ( T x ) of metal-metal and metal...
Abstract
Metallic glasses can be prepared by solidification of liquid alloys at cooling rates sufficient to suppress the nucleation and growth of competing crystalline phases. This article presents a historical survey of the study of metallic glasses and other amorphous metals and alloys. This includes a discussion of synthesis and processing methods, structure and morphology, and a description of the electronic, magnetic, thermodynamic, chemical, and mechanical properties of metallic glasses. In addition, the article describes the development of metallic glasses as materials for technical applications.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001108
EISBN: 978-1-62708-162-7
... superconductivity in the rare earth cuprates ( Ref 1 ). A rapid phase of new discovery quickly produced several new classes of high-temperature superconductors ( Ref 2 ). Enormously important issues of basic physics are posed by the existence of superconductivity at temperatures as high as 125 K and magnetic fields...
Abstract
This article reviews the history of superconductivity from its discovery in the early 1900s to the renewed interest in the mid-1980s spurred by the development of high-temperature superconducting devices. It identifies some of the materials in which superconductivity has been observed, including metals and alloys, compounds, and oxides, and discusses their properties as well as potential applications. The article also explains how various superconducting materials are produced and provides a foundation for understanding the basic operating principles.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001750
EISBN: 978-1-62708-178-8
... liquids and glasses are intermediate between these two. Variable-temperature investigations can sometimes sort out the range at which certain groups, such as methyl, stop rotating. Variable-temperature studies supply detailed information on crystallographic phase transitions and such magnetic phenomena...
Abstract
Electron spin resonance (ESR), or electron paramagnetic resonance (EPR), is an analytical technique that can extract a great deal of information from any material containing unpaired electrons. This article explains how ESR works and where it applies in materials characterization. It describes a typical ESR spectrometer and explains how to tune it to optimize critical electromagnetic interactions in the test sample. It also identifies compounds and elements most suited for ESR analysis and explains how to extract supplementary information from test samples based on the time it takes electrons to return to equilibrium from their resonant state. Two of the most common methods for measuring this relaxation time are presented as are several application examples.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001751
EISBN: 978-1-62708-178-8
.... The stiffness parameter D ( Eq 10 ) can be deduced from the slope, and the manner in which it vanishes ( Fig. 12 ) can be studied as x is reduced toward the value at which ferromagnetism cannot be maintained at any temperature (see the magnetic phase diagram in Fig. 1b ). Thus, FMR helps to delineate...
Abstract
Ferromagnetic resonance (FMR) is used in the identification of the magnetic state of materials, the quantitative determination of static magnetic parameters, and the determination of microwave losses. This article describes the theory of ferromagnetic resonance and provides information on reflection spectrometers, microwave spectrometers, and ferromagnetic anti-resonance spectrometers used for measuring FMR. It also discusses the applications of FMR and provides several detailed examples.
Book Chapter
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006646
EISBN: 978-1-62708-213-6
... for phase identification, for observing magnetic transitions, and for studying the local atomic environment of the resonating nucleus. This Zeeman effect is characterized by the Hamiltonian: (Eq 17) H = − μ · H 0 = − γ ℏ I · H 0 The equally spaced energy levels resulting from...
Abstract
The Mossbauer effect (ME) is a spectroscopic method for observing nuclear gamma-ray fluorescence using the recoil-free transitions of a nucleus embedded in a solid lattice. This article provides an overview of the fundamental principles of ME, covering recoil-free fraction, absorption, selection rules, gamma-ray polarization, isomer shift, quadrupole interaction, and magnetic interaction. Experimental arrangement for obtaining ME spectra is described and several examples of the applications of ME are presented. The article contains tables listing some properties of Mossbauer transitions and principal methods used for producing ME sources.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001109
EISBN: 978-1-62708-162-7
... magnetic field ( B a ) when cooled to below the transition temperature. (a) When cooled without being subjected to the magnetic field (A and B) and (E and F), both conductors exhibit exclusion of an applied magnetic field (C and D) and (G and H). (b) When cooled in the presence of a magnetic field (I...
Abstract
Superconductivity has been found in a wide range of materials, including pure metals, alloys, compounds, oxides, and organic materials. Providing information on the basic principles, this article discusses the theoretical background, types of superconductors, and critical parameters of superconductivity. It discusses the magnetic properties of selected superconductors and types of stabilization, including cryogenic stability, adiabatic stability, and dynamic stability. The article also focuses on alternating current losses in superconductors, including hysteresis loss, penetration loss, eddy current loss, and radio frequency loss. Furthermore, the article describes the flux pinning phenomenon and Josephson effects.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001753
EISBN: 978-1-62708-178-8
.... The hyperfine interaction between the nuclear magnetic moment and a magnetic field at the nuclear site is useful for phase identification, for observing magnetic transitions, and for studying the local atomic environment of the resonating nucleus. This Zeeman effect is characterized by the Hamiltonian: (Eq 17...
Abstract
The Mossbauer effect (ME) is a spectroscopic method for observing nuclear gamma-ray fluorescence based on recoil-free transitions in a nucleus embedded in a solid lattice. This article provides an overview of the fundamental principles of ME and related concepts such as recoil-free fraction, absorption cross section, gamma-ray polarization, isomer shift, and quadrupole and magnetic interactions. It illustrates the experimental arrangement for obtaining ME spectra and presents several application examples.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003155
EISBN: 978-1-62708-199-3
...Abstract Abstract Superconductors are materials that exhibit a complete disappearance of electrical resistivity on lowering the temperature below the critical temperature. A superconducting material must exhibit perfect diamagnetism, that is, the complete exclusion of an applied magnetic field...
Abstract
Superconductors are materials that exhibit a complete disappearance of electrical resistivity on lowering the temperature below the critical temperature. A superconducting material must exhibit perfect diamagnetism, that is, the complete exclusion of an applied magnetic field from the bulk of the superconductor. Superconducting materials that have received the most attention are niobium-titanium superconductors (the most widely used superconductor), A15 compounds (in which class the important ordered intermetallic Nb3Sn lies), ternary molybdenum chalcogenides (Chevrel phases), and high-temperature ceramic superconductors. This article provides an overview of basic principles of superconductors and the different classes of superconducting materials and their general characteristics.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006650
EISBN: 978-1-62708-213-6
... . The central transition (+1/2 to −1/2, in red) is denoted, and satellite transitions (in blue) also are shown. The Larmor frequency (splitting), ω L , increases with magnetic field strength. Fig. 4 Examples of two widely available standard magic-angle spinning nuclear magnetic resonance rotor (sample...
Abstract
This article focuses on the application of solid-state nuclear magnetic resonance (NMR) spectroscopy in materials science, especially for inorganic and organic polymer solids. It begins with a discussion on the general principles of NMR, providing information on nuclear spin descriptions and line narrowing and spectral resolution and describing the impact of magnetic field on nuclear spins and the factors determining resonance frequency. This is followed by a description of various systems and equipment necessary for NMR spectroscopy. A discussion on general sampling for solid-state NMR, sample-spinning requirements, and extraneous signals is then included. Various factors pertinent to accurate calibration of the NMR spectrum are also described. The article provides information on some of the parameters both beneficial and problematic for processing NMR data. It ends with a description of the applications of NMR in glass science and ceramics.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005857
EISBN: 978-1-62708-167-2
... dwell time or feed rate. However, this approach does not guarantee that stable input power will provide stable output, deliver the same energy to every part, and guarantee the same temperature and austenitization pattern. Many parameters, such as magnetic flux concentrator condition, high bus...
Abstract
Inspection involves two types of testing, namely, destructive and non-destructive. This article provides an overview of the various inspection plans, such as first-article inspection and periodic tests done by destructive metallurgical testing and the final inspection done by the application of non-destructive technology. It describes the processes involved in destructive methods, such as surface hardness measurement, induction hardening pattern and heat-affected zone inspection, and the examination of microstructure before and after induction hardening. It also discusses non-destructive evaluation techniques for defect detection and microstructure characterization as well as non-destructive evaluation for real-time monitoring of induction process.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001111
EISBN: 978-1-62708-162-7
... of superconducting transition temperature of optimum Nb-Sn films versus composition. The 5, 50, and 95% completion points are indicated on each transition. The films are 0.5 μm (20 μin.) thick and were deposited at ∼1075 K at ∼2.5 nm · s −1 . Source: Ref 4 . (c) Reduced superconducting transition temperature...
Abstract
This article reviews the phase diagrams, alloy with third element additions, layer growth, critical current density, and matrix materials of A15 superconductors. It describes the production methods of tape conductors (chloride deposition, and surface diffusion) and multifilamentary wires (rod process, modified jelly roll process, niobium tube process, in-situ process, powder metallurgy process, and jelly roll method). The article focuses on reaction heat treatment, which is required at the end of wire processing to convert the ductile components to the desired, but brittle, superconductor. Finally, it discusses the applications of A15 superconductors in commercial magnets, power generation, power transmission, high-energy physics, and fusion.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001114
EISBN: 978-1-62708-162-7
... General Corporation Fig. 4 Pseudobinary Y-Ba-Cu-O phase diagram along the tie line 211-123-(035) Fig. 5 Plot of critical current density versus external magnetic field at measurement temperature of 77 K to compare sintered powder YBCO tape-shaped wire with melt-processed YBCO tape...
Abstract
The discovery of the high-critical-temperature oxide superconductors has accelerated the interest for superconducting applications due to its higher-temperature operation at liquid nitrogen or above and thus reduces the refrigeration and liquid helium requirement. It also permits usage of the high-critical-temperature oxides in magnets or power applications in high-current-carrying wire or tape with acceptable mechanical capability. This article discusses the powder techniques mainly based on the production of an oxide powder precursor, which is then subjected to various processing, including powder-in-tube processing, vapor deposition processing, and melt processing. It further discusses the microstructural, anisotropy and weak link influences on these processes.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001752
EISBN: 978-1-62708-178-8
... magnetic resonance can be used in two different ways to determine phase boundaries and phase transitions in alloys. First, the NMR parameters, for example, linewidth and Knight shift, may change in a measurable way when the alloy changes phase. The NMR parameter then provides a signature by which...
Abstract
Nuclear magnetic resonance (NMR) is a form of radio frequency spectroscopy based on interactions between nuclear magnetic dipole or electric quadrupole moments and an applied magnetic field or electric-field gradient. This article provides an overview of the fundamental principles of nuclear magnetic resonance with emphasis on nuclei properties, the basic equation of nuclear magnetic resonance, the classical theory of nuclear magnetization, line broadening, and measurement sensitivity. It describes the pulse-echo method for observing NMR. The article provides useful information on ferromagnetic nuclear resonance and nuclear quadrupole resonance, and illustrates the experimental arrangement of NMR with a block diagram. It also presents several application examples.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005886
EISBN: 978-1-62708-167-2
.... Martensitic stainless steels are also magnetic at room temperature. Duplex stainless steels have been developed and optimized for specific combinations of properties. Similarly, precipitation-hardening stainless steels include a precipitate phase that increases the mechanical properties, such as tensile...
Abstract
This article discusses special considerations relative to induction heating of stainless steels and nickel-base superalloys. It focuses on the various industrial and high-temperature applications of induction heating to stainless steel and superalloy components, namely, primary melting processes, preheating for primary and secondary forming processes, heat treatments, brazing, and thermal processing for fusion welds. The article also provides information on computational modeling of induction heating processes for super alloys and stainless steels.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005522
EISBN: 978-1-62708-197-9
..., that is, intermediate, ranging from dendrite tip/arm scale (1 to 100 μm) to the grain size (millimeter to centimeter). It follows that controlling the grain structure of the product and inner microstructure of the grains during the liquid-to-solid phase transition is paramount for the quality and reliability...
Abstract
For a wide range of new or better products, solidification processing of metallic materials from the melt is a step of uppermost importance in the industrial production chain. This article discusses the casting and solidification of molten metallic alloy along with the application of low-gravity platforms and facilities for solidification processing. It provides a description of dendritic growth studies and electromagnetic levitation. The article concludes with information on the in situ and real-time monitoring of solidification processing.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005761
EISBN: 978-1-62708-165-8
... (1290 and 1470 °F)—a region in which ferrite-austenite phase transformation occurs. Fig. 4 Electrical resistivity versus temperature for electrolytic iron and a 1% C steel. Source: Ref 4 Magnetic Properties of Steel Relative magnetic permeability, μ r , indicates the ability...
Abstract
This article commences with a description of the principles of induction heating followed by a discussion on the high temperature electrical, magnetic, and thermal properties of steel, which influence the performance of induction heaters. The importance of eddy current distribution in a workpiece is explained, with emphasis on the skin effect. The article discusses typical procedures for induction hardening of steel, namely, austenitizing and quenching to form martensite either on the surface (case hardening) or through the entire section (through hardening). It briefly describes induction heating parameters for surface hardening, through hardening, tempering, and some general heating operations in metalworking.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003066
EISBN: 978-1-62708-200-6
... be segregated into two primary regions that are separated by a third, smaller region known as the glass transition region. Vitreous materials behave as elastic solids for temperatures below the transition region and are properly termed glasses. At temperatures above this region, vitreous materials behave...