Skip Nav Destination
Close Modal
Search Results for
magnetic permeability system
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 280
Search Results for magnetic permeability system
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006467
EISBN: 978-1-62708-190-0
... provides a discussion on electromagnetic systems, eddy-current systems, and magnetic permeability systems for detection of flaws on steel bars. It concludes with a description of nondestructive inspection of steel billets. cracks eddy-current system electromagnetic inspection inclusions liquid...
Abstract
This article focuses on nondestructive inspection of steel bars. The primary objective in the nondestructive inspection of steel bars and wire is to detect conditions in the material that may be detrimental to the satisfactory end use of the product. The article discusses various types of flaws encountered in the inspection of steel bars, including porosity, inclusions, scabs, cracks, seams, and laps. Inspection methods, such as magnetic-particle inspection. liquid penetrant inspection, ultrasonic inspection, and electromagnetic inspection, of steel bars are also described. The article provides a discussion on electromagnetic systems, eddy-current systems, and magnetic permeability systems for detection of flaws on steel bars. It concludes with a description of nondestructive inspection of steel billets.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005846
EISBN: 978-1-62708-167-2
... for Magnetic Flux Control Soft magnetic materials most commonly used in induction systems are laminations and soft magnetic composites. Soft magnetic ferrites are used occasionally in some high-frequency applications. The main requirements are that it should have a relative magnetic permeability >1...
Abstract
Magnetic flux controllers are materials other than the copper coil that are used in induction systems to alter the flow of the magnetic field. This article describes the effects of magnetic flux controllers on common coil styles, namely, outer diameter coils, inner diameter coils, and linear coils. It provides information on the role of magnetic flux controllers for whole-body and local area mass-heating applications, continuous induction tube welding, seam-annealing inductors, and various induction melting systems, namely, channel-type, crucible-type, and cold crucible systems. The article also describes the benefits of the flux controllers for induction heat treating processes such as single-shot and scanning.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005896
EISBN: 978-1-62708-167-2
..., and specific heat. It describes the two important electromagnetic properties, electrical resistivity (electrical conductivity) and magnetic permeability, which posses the most pronounced effect on the performance of the induction heating system, its efficiency, and selection of main design parameters...
Abstract
In an induction heating system, thermal and electromagnetic properties of heated materials make the greatest impact on the heat transfer and performance of induction heating process. This article focuses on major thermal properties, namely, thermal conductivity, heat capacity, and specific heat. It describes the two important electromagnetic properties, electrical resistivity (electrical conductivity) and magnetic permeability, which posses the most pronounced effect on the performance of the induction heating system, its efficiency, and selection of main design parameters. The article also discusses the magnetic properties of diamagnetic, paramagnetic, ferromagnetic, ferrimagnetic, antiferromagnetic, and metamagnetic materials.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005879
EISBN: 978-1-62708-167-2
... field (EMF) calculations are the electrical conductivity (γ), which depends on the temperature of the heated body; the magnetic permeability (μ), which depends not only on the temperature but also on the magnetic field density ( B ); and the frequency of field current ( f ). The material properties...
Abstract
Induction heating computations deal with a multiphysics problem containing analysis of several coupled physical fields such as electromagnetic, temperature, mechanical, and metallurgical. In order to solve coupled electromagnetic-temperature field problems, it is necessary to develop suitable algorithms and numerical procedures, which make it possible to deal with these nonlinear coupled problems. This article focuses on the most common approaches to coupled electromagnetic and heat transfer problems, namely, weak-, quasi-, and hard-coupled formulations.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003234
EISBN: 978-1-62708-199-3
... and nonferromagnetic metals and metal parts. Giving a brief introduction on the uses of eddy-current inspection, this article discusses the operating principles and the principal operating variables encountered in eddy-current inspection, including coil impedance, electrical conductivity, magnetic permeability, lift...
Abstract
Eddy-current inspection is a nondestructive evaluation method based on the principles of electromagnetic induction. Eddy-current methods are used to identify or differentiate a wide variety of physical, structural, and metallurgical conditions in electrically conductive ferromagnetic and nonferromagnetic metals and metal parts. Giving a brief introduction on the uses of eddy-current inspection, this article discusses the operating principles and the principal operating variables encountered in eddy-current inspection, including coil impedance, electrical conductivity, magnetic permeability, lift-off and fill factors, edge effect, and skin effect. It further describes different aspects of eddy current testing such as the selection of inspection frequencies and the types and configurations of inspection coils. The article also deals with the eddy current instrumentation and the discontinuities that are detectable by eddy-current methods.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006450
EISBN: 978-1-62708-190-0
... electromagnetic induction engine components ferromagnetic metals induction bridge system magnetic permeability nonferromagnetic metals resistors single-coil system transmission system EDDY-CURRENT INSPECTION is based on the principles of electromagnetic induction and is used to identify...
Abstract
Eddy-current inspection is based on the principles of electromagnetic induction and is used to identify or differentiate among a wide variety of physical, structural, and metallurgical conditions in electrically conductive ferromagnetic and nonferromagnetic metals and metal parts. This article discusses the advantages and limitations of eddy-current inspection, as well as the development of the eddy-current inspection process. It reviews the principal operating variables encountered in eddy-current inspection: coil impedance, electrical conductivity, magnetic permeability, lift-off and fill factors, edge effect, and skin effect. The article illustrates some of the principal impedance concepts that are fundamental to understanding of and effective application of eddy-current inspection. It discusses various types of eddy-current instruments, such as the resistor and single-coil system, bridge unbalance system, induction bridge system, and through transmission system. The article concludes with a discussion on the inspection of aircraft structural and engine components.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003153
EISBN: 978-1-62708-199-3
.... Of the various types of magnetic anisotropy energy, the magnetocrystalline and magnetostrictive anisotropies are the most important in this system. Two broad classes of alloys have been developed in the nickel-iron system. The high-nickel alloys (approximately 79% Ni) have high initial permeability ( Fig. 6...
Abstract
This article discusses the ferromagnetic properties of soft magnetic materials, explaining the effects of impurities, alloying elements, heat treatment, grain size, and grain orientation on soft magnetic materials. It describes the types of soft magnetic materials, which include high-purity iron, low-carbon irons, silicon (electrical) steels, nickel-iron alloys, iron-cobalt alloys, ferritic stainless steels, amorphous metals, and ferrites (ceramics). Finally, the article provides a short note on alloys for magnetic temperature compensation.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001093
EISBN: 978-1-62708-162-7
..., magnetic shielding, and so on. Important characteristics of magnetically soft materials also include: High permeability High saturation induction Low hysteresis-energy loss Low eddy-current loss in alternating flux applications In specialized cases, constant permeability at low field...
Abstract
Magnetically soft materials are characterized by their low coercivity, an essential requirement for irons and steels selected for any application involving electromagnetic induction cycling. This article provides information on ferromagnetic material properties and how they are affected by impurities, alloying additions, heat treatment, residual stress, and grain size. It also describes classification and testing methods for magnetically soft materials such as high-purity iron, low-carbon steels, silicon steels, iron-aluminum alloys, nickel-iron alloys, iron-cobalt alloys, ferrites, and stainless steels. The article also addresses corrosion resistance and provides insights on the selection of alloys for power generation applications, including motors, generators, and transformers. A short note on the design and fabrication of magnetic cores is also included.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005857
EISBN: 978-1-62708-167-2
... area with small magnetic permeability: tan φ / tan δ = μ 1 / μ 2 where φ and δ are the incidence and refraction angles, respectively; and µ 1 and µ 2 are the magnetic permeability for the ferromagnetic part and the flaw area. If a flaw is located close...
Abstract
Inspection involves two types of testing, namely, destructive and non-destructive. This article provides an overview of the various inspection plans, such as first-article inspection and periodic tests done by destructive metallurgical testing and the final inspection done by the application of non-destructive technology. It describes the processes involved in destructive methods, such as surface hardness measurement, induction hardening pattern and heat-affected zone inspection, and the examination of microstructure before and after induction hardening. It also discusses non-destructive evaluation techniques for defect detection and microstructure characterization as well as non-destructive evaluation for real-time monitoring of induction process.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001400
EISBN: 978-1-62708-173-3
..., that is, materials with large magnetic permeability values (e.g., iron, low-carbon steels, nickel, etc.). Permeability being the same, materials with higher electrical resistivity heat more efficiently than low-resistivity materials. Therefore, heating efficiency is optimized by joints having metals with large...
Abstract
This article describes resistivity effects and Curie temperature effects on coupling efficiency during induction heating in the soldering operation. It discusses the effects of workpiece geometry during the induction heating. The practices associated with the use of preplaced solder are reviewed. The article provides useful information on setup parameters and safety concerns for the use of induction heating.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003233
EISBN: 978-1-62708-199-3
... developed for use in petroleum-industry applications, such as inspection of large-diameter pipelines. In most such tools, sensors are the inductive coil type, oriented to measure the axial component of the leakage field gradient. Data usually are recorded on magnetic tape as the system is propelled down...
Abstract
Magnetic field testing includes some widely used nondestructive evaluation methods to inspect magnetic materials for defects such as cracks, voids, and inclusions and to assess other material properties, such as grain size, texture, and hardness. This article discusses the principles of such defect detection, providing details on the origin, generation, and assessment of leakage field data. In addition, it discusses the metallurgical and magnetic properties of magnetic materials and the applications of magnetic field testing.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006057
EISBN: 978-1-62708-175-7
... Abstract Powder metallurgy (PM) techniques are effective in making magnetically soft components for use in magnetic part applications. This article provides an account of the factors affecting magnetism, permeability, and hysteresis losses. It includes information on the magnetic properties...
Abstract
Powder metallurgy (PM) techniques are effective in making magnetically soft components for use in magnetic part applications. This article provides an account of the factors affecting magnetism, permeability, and hysteresis losses. It includes information on the magnetic properties of PM materials that are used in the magnetic part applications, namely, pure iron, phosphorus irons, ferritic stainless steels, 50 nickel-50 iron, and silicon irons. The article describes the factors that affect and optimize magnetic properties. It contains a table that lists the magnetic properties possible in metal injection molding parts. The article also discusses ferromagnetic cores used in alternating current applications and some permanent magnets, such as rare earth-cobalt magnets and neodymium-iron-boron (neo) magnets.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005877
EISBN: 978-1-62708-167-2
..., and electromagnetic forces. differential equations electrical properties magnetic properties mathematical modeling Electromagnetic problem solutions are based on the macroscopic theory of the continuous model for the electromagnetic field (EMF). It is described by a system of integral or partial...
Abstract
Electromagnetic problem solutions are based on the macroscopic theory of the continuous model for the electromagnetic field (EMF). It is described by a system of integral or partial differential equations for five vector quantities, namely, electric field strength, electric flux density, current density, magnetic field strength, and magnetic flux density. This article describes the behavior of the EMF by Maxwell's equations in integral or differential forms. It discusses the definition of potentials; methods of mathematical modeling; boundary conditions; and energy, power density, and electromagnetic forces.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006442
EISBN: 978-1-62708-190-0
... in combination with other methods, such as incremental permeability and upper harmonics analysis of the tangential magnetic field, to characterize material properties such as hardness, hardening depth, and yield and tensile strength ( Ref 1 , 2 ). Principles of Micromagnetic Techniques The domain...
Abstract
This article discusses the principles and limitations of micromagnetic techniques, namely, magnetic Barkhausen noise (MBN) and magnetoacoustic emission (MAE). It also discusses various factors limiting the establishment of acceptance criteria for test components as they pertain to the successful application of MBN measurement and signal interpretation. The article provides an overview of basic magnetic phenomena and dynamics in ferromagnetic materials that underlie the origin of MBN emissions. It describes the changes in the domain structure of the ferromagnetic material under an applied external field. The relationship between uniaxial stress and angular-dependent strain is also discussed. The influence of stress on domain walls, and therefore, the generation of Barkhausen noise are described. The article also describes the directional and angular MBN measurements and provides information on detection, angular dependence, and advanced analysis methods of MBN emissions.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005516
EISBN: 978-1-62708-197-9
... electromagnetic properties, two of them—electrical resistivity (electrical conductivity) and magnetic permeability—have the most pronounced effect on the performance of an induction heating system, coil efficiency, and selection of the main design and process parameters ( Ref 1 ). Two Properties with the Most...
Abstract
The most popular metal hot working processes for which induction heating is applied are forging, forming, extrusion, and rolling. This article focuses on estimation techniques to determine basic induction heating process parameters, including coil power, length of heating line, and frequency selection. It discusses three modes of heat transfer: conduction, convection, and radiation, in induction heating. The article describes the factors affected by a distortion of the magnetic field at the coil end through a schematic illustration of distribution of three magnetic force components experienced by the turns of the coil. It concludes with information on some case studies of numerical simulation.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005761
EISBN: 978-1-62708-165-8
... Distribution” in this article). Thus, the electrical resistivity and relative magnetic permeability of the workpiece have a pronounced effect on the performance of an induction heating system, the coil efficiency, and the selection of main design and process parameters ( Ref 3 ). Electrical Resistivity...
Abstract
This article commences with a description of the principles of induction heating followed by a discussion on the high temperature electrical, magnetic, and thermal properties of steel, which influence the performance of induction heaters. The importance of eddy current distribution in a workpiece is explained, with emphasis on the skin effect. The article discusses typical procedures for induction hardening of steel, namely, austenitizing and quenching to form martensite either on the surface (case hardening) or through the entire section (through hardening). It briefly describes induction heating parameters for surface hardening, through hardening, tempering, and some general heating operations in metalworking.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005234
EISBN: 978-1-62708-187-0
... or the temperature of the system, or a combination of both. In general, the domain in a solidification process will consist of multiple phases distributed among solid, liquid, and gas fractions. A simplified—but reasonably realistic—system to consider is an alloy in which (a) the transformation from liquid...
Abstract
This article examines the critical features of four key areas of modeling transport phenomena associated with casting processes. These include heat and species transport in a metal alloy, flow of the liquid metal, tracking of the free metal-gas surface, and inducement of metal flow via electromagnetic fields. Conservation equations that represent important physical phenomena during casting processes are presented. The article provides a discussion on how the physical phenomena can be solved. It provides information on a well-established array of general and specific computational tools that can be readily applied to modeling casting processes. The article also summarizes the key features of the conservation equations in these tools.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005888
EISBN: 978-1-62708-167-2
...% of all induced power is concentrated. The thickness of this layer is called the reference depth or current penetration depth (δ). The value of penetration depth varies with the square root of electrical resistivity and inversely with the square root of frequency and the relative magnetic permeability...
Abstract
This article provides a rough estimate of the basic parameters, including coil efficiency, power, and frequency in induction heating of billets, rods, and bars. It focuses on the frequency selection for heating solid cylinders made of nonmagnetic metals, frequency selection when heating solid cylinders made from nonmagnetic alloys, and frequency selection when heating solid cylinders made from magnetic alloys. The article describes several design concepts that can be used for induction billet heating, namely, static heating and progressive/continuous heating. It presents the four major factors associated with the location and magnitude of subsurface overheating: frequency, refractory, final temperature, and power distribution along the heating line. The article summarizes the pros and cons of using a single power supply. It also reviews the design features of modular systems, and concludes with information on the temperature profile modeling software.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006468
EISBN: 978-1-62708-190-0
... Special-purpose stationary units are designed for handling and inspecting large quantities of similar items. Generally, conveyors, automatic markers, and alarm systems are included in such units to expedite the handling of parts. Methods of Generating Magnetic Fields One of the basic requirements...
Abstract
Magnetic-particle inspection is a method of locating surface and subsurface discontinuities in ferromagnetic materials. This article discusses the applications and advantages and limitations of magnetic-particle inspection. It describes magnetic fields in terms of magnetized ring, magnetized bar, circular magnetization, longitudinal magnetization, and effects of flux direction. General applications, advantages, and limitations of the various magnetizing methods used in magnetic-particle inspection are listed in a table. The article discusses the items that must be considered in establishing a set of procedures for the magnetic-particle inspection of a specific part: type of current, type of magnetic particles, method of magnetization, direction of magnetization, magnitude of applied current, and equipment. It concludes with a discussion on demagnetization after magnetic-particle inspection.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006476
EISBN: 978-1-62708-190-0
.... As discussed in the article “Micromagnetic Techniques” in this Volume, both residual and applied stresses affect the magnetic permeability of iron-base alloys. The end result of this relationship is a correlation between stress and the MBN signal amplitude ( Fig. 3 ). Fig. 3 The relationship between...
Abstract
Gears are a common part type for applications of the magnetic Barkhausen noise (MBN) techniques for nondestructive inspection. This article discusses the typical applications for MBN techniques, namely, detection of grinding retemper burn, evaluation of residual stresses, and detection of heat treatment defects, including the evaluation of case depth.
1