Skip Nav Destination
Close Modal
By
Matthew A. Willard, George F. Vander Voort
By
Kalathur S. Narasimhan
By
Peter Robinson
By
Eugene J. Rymaszewski
Search Results for
magnetic characteristics
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 908
Search Results for magnetic characteristics
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Direct current normal induction characteristics of several soft magnetic ma...
Available to Purchase
in Magnetically Soft Materials
> Properties and Selection: Nonferrous Alloys and Special-Purpose Materials
Published: 01 January 1990
Fig. 18 Direct current normal induction characteristics of several soft magnetic materials annealed at indicated temperature: A, 79Ni-4Mo-Fe (1175 °C, or 2150 °F); B, 49Ni-Fe (1175 °C, or 2150 °F); C, 2.5Si-Fe (1065 °C, or 1950 °F); D, Air melt iron (845 °C, or 1550 °F); E, 2V-49Co-49Fe (875
More
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001094
EISBN: 978-1-62708-162-7
... Abstract This article discusses the chief magnetic characteristics of permanent magnet materials. It provides a detailed description on nominal compositions; principal magnet designations; magnetic, physical, and mechanical properties; selection criteria; and applications of the permanent...
Abstract
This article discusses the chief magnetic characteristics of permanent magnet materials. It provides a detailed description on nominal compositions; principal magnet designations; magnetic, physical, and mechanical properties; selection criteria; and applications of the permanent magnet materials, which include magnet steels, magnet alloys, alnico alloys, platinum-cobalt alloys, cobalt and rare-earth alloys, hard ferrites, iron-chromium-cobalt alloys, and neodymium-iron-boron alloys.
Book Chapter
Magnetic Field Testing
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003233
EISBN: 978-1-62708-199-3
... between signal and flaw characteristics is required in situations where flaw size varies (such as corrosion pits in steel tubing) and where different types of flaws (such as cracks and pits) are present in the same part to avoid serious errors. Principles of Magnetic Characterization of Materials...
Abstract
Magnetic field testing includes some widely used nondestructive evaluation methods to inspect magnetic materials for defects such as cracks, voids, and inclusions and to assess other material properties, such as grain size, texture, and hardness. This article discusses the principles of such defect detection, providing details on the origin, generation, and assessment of leakage field data. In addition, it discusses the metallurgical and magnetic properties of magnetic materials and the applications of magnetic field testing.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001093
EISBN: 978-1-62708-162-7
... classification corrosion resistance ferromagnetic properties magnetic cores magnetic testing methods magnetically soft materials power generation applications MAGNETIC MATERIALS are broadly classified into two groups with either hard or soft magnetic characteristics. Hard magnetic materials...
Abstract
Magnetically soft materials are characterized by their low coercivity, an essential requirement for irons and steels selected for any application involving electromagnetic induction cycling. This article provides information on ferromagnetic material properties and how they are affected by impurities, alloying additions, heat treatment, residual stress, and grain size. It also describes classification and testing methods for magnetically soft materials such as high-purity iron, low-carbon steels, silicon steels, iron-aluminum alloys, nickel-iron alloys, iron-cobalt alloys, ferrites, and stainless steels. The article also addresses corrosion resistance and provides insights on the selection of alloys for power generation applications, including motors, generators, and transformers. A short note on the design and fabrication of magnetic cores is also included.
Book Chapter
Magnetically Soft Materials
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003153
EISBN: 978-1-62708-199-3
... stainless steel ferromagnetic properties high-purity iron iron-cobalt alloys low-carbon iron nickel-iron alloys silicon steels soft magnetic materials MAGNETIC MATERIALS are broadly classified into two groups with either hard or soft magnetic characteristics. Hard magnetic materials...
Abstract
This article discusses the ferromagnetic properties of soft magnetic materials, explaining the effects of impurities, alloying elements, heat treatment, grain size, and grain orientation on soft magnetic materials. It describes the types of soft magnetic materials, which include high-purity iron, low-carbon irons, silicon (electrical) steels, nickel-iron alloys, iron-cobalt alloys, ferritic stainless steels, amorphous metals, and ferrites (ceramics). Finally, the article provides a short note on alloys for magnetic temperature compensation.
Book Chapter
Permanent Magnet Materials
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003154
EISBN: 978-1-62708-199-3
... magnetic characteristics: high induction, high resistance to demagnetization, and maximum energy content. Magnetic induction is limited by composition; the highest saturation induction is found in binary iron-cobalt alloys. Resistance to demagnetization is conditioned less by composition than by shape...
Abstract
Premanent magnet refers to solid materials that have sufficiently high resistance to demagnetizing fields and sufficiently high magnetic flux output to provide useful and stable magnetic fields. Permanent magnet materials include a variety of alloys, intermetallics, and ceramics. This article discusses the composition, properties, and applications of permanent magnetic materials, such as hysteresis alloys used in motors. It primarily focuses on the stability of magnetic fields that influences reversible and irreversible losses in magnetization with time, and the choice of magnet material, component shape and magnetic circuit arrangement.
Book Chapter
Microstructure and Domain Imaging of Magnetic Materials
Available to PurchaseSeries: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003788
EISBN: 978-1-62708-177-1
..., their characteristics and sample preparation procedures. It reviews the methods pertaining to the microstructural examination of bulk magnetic materials, including microscopy techniques specified to magnetic materials characterization, with specific examples. The techniques used in the study of magnetic domain...
Abstract
Microstructural analysis of specialized types of magnetic materials is centered on the examination of optical, electron, and scanning probe metallographic techniques unique to magnetic materials. This article provides a comprehensive overview of magnetic materials, their characteristics and sample preparation procedures. It reviews the methods pertaining to the microstructural examination of bulk magnetic materials, including microscopy techniques specified to magnetic materials characterization, with specific examples. The techniques used in the study of magnetic domain structures (microstructure) include the magneto-optical Kerr method, the Faraday method, the Bitter technique, scanning electron microscopy (magnetic contrast Types I and II), scanning electron microscopy with polarization analysis, Lorentz transmission electron microscopy, and magnetic force microscopy. The article also illustrates the microstructure of different types of soft magnetic material and permanent magnets.
Book Chapter
Magnetic-Particle Inspection
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003232
EISBN: 978-1-62708-199-3
... a detailed account of the portable power sources available for magnetization, and the different ways of generating magnetic fields using yokes, coils, central conductors, prod contacts, direct-contact, and induced current. In addition, the article discusses the characteristics and classification...
Abstract
Magnetic-particle inspection is a nondestructive testing technique used to locate surface and subsurface discontinuities in ferromagnetic materials. Beginning with an overview of the applications, advantages, and limitations of magnetic-particle inspection, this article provides a detailed account of the portable power sources available for magnetization, and the different ways of generating magnetic fields using yokes, coils, central conductors, prod contacts, direct-contact, and induced current. In addition, the article discusses the characteristics and classification, and properties of magnetic particles and suspended liquids. Finally, the article outlines the types of discontinuities (surface and subsurface) that can be identified by magnetic-particle inspection and the importance of demagnetization after inspection.
Book Chapter
Magnetic Materials and Properties for Powder Metallurgy Part Applications
Available to PurchaseBook: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006057
EISBN: 978-1-62708-175-7
.... This method characterizes the magnetic response in terms of magnetic induction, B , versus the applied field, H , as shown in Fig. 1(b) . These basic characteristics of magnetic response are briefly summarized in this introductory section. Fig. 1 Standard toroid test of magnetic response. (a) Test...
Abstract
Powder metallurgy (PM) techniques are effective in making magnetically soft components for use in magnetic part applications. This article provides an account of the factors affecting magnetism, permeability, and hysteresis losses. It includes information on the magnetic properties of PM materials that are used in the magnetic part applications, namely, pure iron, phosphorus irons, ferritic stainless steels, 50 nickel-50 iron, and silicon irons. The article describes the factors that affect and optimize magnetic properties. It contains a table that lists the magnetic properties possible in metal injection molding parts. The article also discusses ferromagnetic cores used in alternating current applications and some permanent magnets, such as rare earth-cobalt magnets and neodymium-iron-boron (neo) magnets.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003086
EISBN: 978-1-62708-199-3
... properties (mass characteristics and thermal, electrical, magnetic, radiation, and optical properties), chemical properties (corrosion and oxidation resistance) and mechanical properties (tensile and yield strength, elongation, toughness, hardness, creep, and fatigue). The article also contains tables...
Abstract
Material properties are the link between the basic structure and composition of the material and the service performance of a part or component. This article describes the most significant properties that must be considered when choosing a metal for a given application, namely physical properties (mass characteristics and thermal, electrical, magnetic, radiation, and optical properties), chemical properties (corrosion and oxidation resistance) and mechanical properties (tensile and yield strength, elongation, toughness, hardness, creep, and fatigue). The article also contains tables that list room-temperature physical properties, vapor pressures, and mechanical properties for various metals.
Book Chapter
Properties of Pure Metals
Available to PurchaseSeries: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001117
EISBN: 978-1-62708-162-7
... Abstract This article presents the following characteristics of pure metals : structure, chemical composition, mass characteristics, thermal properties, electrical properties, chemical properties, magnetic properties, optical properties, fabrication characteristics, nuclear properties...
Abstract
This article presents the following characteristics of pure metals : structure, chemical composition, mass characteristics, thermal properties, electrical properties, chemical properties, magnetic properties, optical properties, fabrication characteristics, nuclear properties, and mechanical properties.
Book Chapter
Properties of Wrought Coppers and Copper Alloys
Available to PurchaseSeries: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001067
EISBN: 978-1-62708-162-7
... Abstract This article is a compilation of the property data for standard grades of wrought copper and copper alloys. Data are provided for mechanical, physical, thermal, electrical, optical, and magnetic properties. The list for each alloy includes its commercial names, chemical composition...
Abstract
This article is a compilation of the property data for standard grades of wrought copper and copper alloys. Data are provided for mechanical, physical, thermal, electrical, optical, and magnetic properties. The list for each alloy includes its commercial names, chemical composition, relevant specifications and standards, fabrication characteristics, mass characteristics, and applications.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001069
EISBN: 978-1-62708-162-7
... · °F) at 20 °C (68 °F) Electrical Properties Electrical Conductivity Volumetric, 92% IACS at 20 °C (68 °F) Magnetic Properties Magnetic Permeability 1.0 Fabrication Characteristics Machinability 10% of C36000 (free-cutting brass) C81300 Commercial Names Previous...
Abstract
This article is a compilation of property data for standard grades of cast copper alloys. Data are provided for mechanical, physical, thermal, electrical, chemical, nuclear, optical, and magnetic properties. The list for each alloy includes its common name, chemical composition, applications, mass characteristics, and fabrication characteristics.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001077
EISBN: 978-1-62708-162-7
..., chemical, and magnetic properties. The listing for each alloy includes chemical compositions, relevant specifications, mass characteristics, and fabrication characteristics. chemical properties electrical properties gravity castings magnetic properties mechanical properties pressure die castings...
Abstract
This article describes the zinc and zinc alloys for decorative and functional applications. It focuses on the types of zinc coatings, namely, hot dip galvanizing, electrogalvanizing, metallizing, and mechanical galvanizing. The article covers the uses of zinc alloy castings, including pressure die castings, and gravity castings. It details the wrought products of zinc and zinc alloys, including flat-rolled products, wire-drawn products, extruded products, and forged products. The article also describes various properties of zinc alloys, including mechanical, thermal, electrical, chemical, and magnetic properties. The listing for each alloy includes chemical compositions, relevant specifications, mass characteristics, and fabrication characteristics.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005857
EISBN: 978-1-62708-167-2
... properties of the probing medium are changed and can be used to determine variations in the characteristics of the test material ( Ref 4 , 5 , 6 ). The electromagnetic energy spectrum includes electrical, magnetic, optical, infrared, ultraviolet, x-ray, and gamma ray. The dynamic or sonic spectrum...
Abstract
Inspection involves two types of testing, namely, destructive and non-destructive. This article provides an overview of the various inspection plans, such as first-article inspection and periodic tests done by destructive metallurgical testing and the final inspection done by the application of non-destructive technology. It describes the processes involved in destructive methods, such as surface hardness measurement, induction hardening pattern and heat-affected zone inspection, and the examination of microstructure before and after induction hardening. It also discusses non-destructive evaluation techniques for defect detection and microstructure characterization as well as non-destructive evaluation for real-time monitoring of induction process.
Image
Published: 01 January 1986
Fig. 11 Temperature dependence of magnetization deduced from FMR data on Fe x Ni 80− x P 14 B 6 alloys. Note the linearity at low T , which indicates that the reduction in magnetization occurs due to excitation of spin waves. The slope can be used to calculate the spin wave stiffness D
More
Book Chapter
Blanking and Piercing of Electrical Steel Sheet
Available to PurchaseSeries: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005119
EISBN: 978-1-62708-186-3
... magnetic characteristics. Maximum burr height is usually limited to 0.05 to 0.13 mm (0.002 and 0.005 in.). Length of Die Run A die is usually run until the maximum allowable burr height is reached, at which time the punch and die are removed for sharpening. Close control is required with this method...
Abstract
This article discusses the presses, auxiliary equipment, and dies used in the blanking and piercing of commonly used magnetically soft materials, namely, low-carbon electrical steels and oriented and nonoriented silicon electrical steels. It describes the effect of stock thickness and work metal composition and condition on blanking and piercing. The article provides an overview of the influence of burr height on stacking factors and presents a discussion on the lubrication and core plating of electrical steels that ease the process.
Book Chapter
Properties Needed for Electronic and Magnetic Applications
Available to PurchaseSeries: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002475
EISBN: 978-1-62708-194-8
... Abstract This article presents an overview of the electric and magnetic parameters and discusses the significance of these parameters for electronic applications. It describes the components of analog and digital electronic circuits. The article reviews the augmenting technologies: magnetic...
Abstract
This article presents an overview of the electric and magnetic parameters and discusses the significance of these parameters for electronic applications. It describes the components of analog and digital electronic circuits. The article reviews the augmenting technologies: magnetic and special technologies such as electrooptical.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006442
EISBN: 978-1-62708-190-0
... and measure properties of ferromagnetic materials. Due to their pervasive use, iron and its alloys are the main focus for application of the MBN measurement technique. Observed correlations between Barkhausen noise signal characteristics and steel magnetic properties, such as permeability and coercivity...
Abstract
This article discusses the principles and limitations of micromagnetic techniques, namely, magnetic Barkhausen noise (MBN) and magnetoacoustic emission (MAE). It also discusses various factors limiting the establishment of acceptance criteria for test components as they pertain to the successful application of MBN measurement and signal interpretation. The article provides an overview of basic magnetic phenomena and dynamics in ferromagnetic materials that underlie the origin of MBN emissions. It describes the changes in the domain structure of the ferromagnetic material under an applied external field. The relationship between uniaxial stress and angular-dependent strain is also discussed. The influence of stress on domain walls, and therefore, the generation of Barkhausen noise are described. The article also describes the directional and angular MBN measurements and provides information on detection, angular dependence, and advanced analysis methods of MBN emissions.
Book Chapter
No-Bond Sand Molding
Available to PurchaseBook: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005251
EISBN: 978-1-62708-187-0
... Abstract This article describes the process and advantages of no-bond methods of vacuum molding and magnetic molding, with schematic illustrations. It also discusses the characteristics of plastic film and dimensional specifications of vacuum molding. magnetic molding vacuum molding...
Abstract
This article describes the process and advantages of no-bond methods of vacuum molding and magnetic molding, with schematic illustrations. It also discusses the characteristics of plastic film and dimensional specifications of vacuum molding.
1